尺度不变性的作用原理及其应用(第一部分)

IF 2.2 3区 综合性期刊 Q2 MULTIDISCIPLINARY SCIENCES
Symmetry-Basel Pub Date : 2023-10-24 DOI:10.3390/sym15111966
Andre Maeder, Vesselin G. Gueorguiev
{"title":"尺度不变性的作用原理及其应用(第一部分)","authors":"Andre Maeder, Vesselin G. Gueorguiev","doi":"10.3390/sym15111966","DOIUrl":null,"url":null,"abstract":"On the basis of a general action principle, we revisit the scale invariant field equation using the cotensor relations by Dirac (1973). This action principle also leads to an expression for the scale factor λ, which corresponds to the one derived from the gauging condition, which assumes that a macroscopic empty space is scale-invariant, homogeneous, and isotropic. These results strengthen the basis of the scale-invariant vacuum (SIV) paradigm. From the field and geodesic equations, we derive, in current time units (years, seconds), the Newton-like equation, the equations of the two-body problem, and its secular variations. In a two-body system, orbits very slightly expand, while the orbital velocity keeps constant during expansion. Interestingly enough, Kepler’s third law is a remarkable scale-invariant property.","PeriodicalId":48874,"journal":{"name":"Symmetry-Basel","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2023-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Action Principle for Scale Invariance and Applications (Part I)\",\"authors\":\"Andre Maeder, Vesselin G. Gueorguiev\",\"doi\":\"10.3390/sym15111966\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"On the basis of a general action principle, we revisit the scale invariant field equation using the cotensor relations by Dirac (1973). This action principle also leads to an expression for the scale factor λ, which corresponds to the one derived from the gauging condition, which assumes that a macroscopic empty space is scale-invariant, homogeneous, and isotropic. These results strengthen the basis of the scale-invariant vacuum (SIV) paradigm. From the field and geodesic equations, we derive, in current time units (years, seconds), the Newton-like equation, the equations of the two-body problem, and its secular variations. In a two-body system, orbits very slightly expand, while the orbital velocity keeps constant during expansion. Interestingly enough, Kepler’s third law is a remarkable scale-invariant property.\",\"PeriodicalId\":48874,\"journal\":{\"name\":\"Symmetry-Basel\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2023-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Symmetry-Basel\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/sym15111966\",\"RegionNum\":3,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Symmetry-Basel","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/sym15111966","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 1

摘要

在一般作用原理的基础上,我们用狄拉克(1973)的协张量关系重新讨论了尺度不变场方程。这一作用原理也导致了尺度因子λ的表达式,它对应于测量条件,假设宏观空间是尺度不变的,均匀的,各向同性。这些结果加强了尺度不变真空(SIV)范式的基础。从场方程和测地线方程中,我们以当前的时间单位(年、秒)推导出类牛顿方程、二体问题方程及其长期变化。在双体系统中,轨道会轻微膨胀,而在膨胀过程中轨道速度保持恒定。有趣的是,开普勒第三定律是一个显著的尺度不变性质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Action Principle for Scale Invariance and Applications (Part I)
On the basis of a general action principle, we revisit the scale invariant field equation using the cotensor relations by Dirac (1973). This action principle also leads to an expression for the scale factor λ, which corresponds to the one derived from the gauging condition, which assumes that a macroscopic empty space is scale-invariant, homogeneous, and isotropic. These results strengthen the basis of the scale-invariant vacuum (SIV) paradigm. From the field and geodesic equations, we derive, in current time units (years, seconds), the Newton-like equation, the equations of the two-body problem, and its secular variations. In a two-body system, orbits very slightly expand, while the orbital velocity keeps constant during expansion. Interestingly enough, Kepler’s third law is a remarkable scale-invariant property.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Symmetry-Basel
Symmetry-Basel MULTIDISCIPLINARY SCIENCES-
CiteScore
5.40
自引率
11.10%
发文量
2276
审稿时长
14.88 days
期刊介绍: Symmetry (ISSN 2073-8994), an international and interdisciplinary scientific journal, publishes reviews, regular research papers and short notes. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. There is no restriction on the length of the papers. Full experimental and/or methodical details must be provided, so that results can be reproduced.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信