几乎无差别李群和溶点上的谐波近复结构

IF 1 3区 数学 Q1 MATHEMATICS
Adrián Andrada, Alejandro Tolcachier
{"title":"几乎无差别李群和溶点上的谐波近复结构","authors":"Adrián Andrada,&nbsp;Alejandro Tolcachier","doi":"10.1007/s10231-023-01392-1","DOIUrl":null,"url":null,"abstract":"<div><p>An almost abelian Lie group is a solvable Lie group with a codimension one normal abelian subgroup. We characterize almost Hermitian structures on almost abelian Lie groups where the almost complex structure is harmonic with respect to the Hermitian metric. Also, we adapt the Gray–Hervella classification of almost Hermitian structures to the family of almost abelian Lie groups. We provide several examples of harmonic almost complex structures in different Gray–Hervella classes on some associated compact almost abelian solvmanifolds.</p></div>","PeriodicalId":8265,"journal":{"name":"Annali di Matematica Pura ed Applicata","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2023-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Harmonic almost complex structures on almost abelian Lie groups and solvmanifolds\",\"authors\":\"Adrián Andrada,&nbsp;Alejandro Tolcachier\",\"doi\":\"10.1007/s10231-023-01392-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>An almost abelian Lie group is a solvable Lie group with a codimension one normal abelian subgroup. We characterize almost Hermitian structures on almost abelian Lie groups where the almost complex structure is harmonic with respect to the Hermitian metric. Also, we adapt the Gray–Hervella classification of almost Hermitian structures to the family of almost abelian Lie groups. We provide several examples of harmonic almost complex structures in different Gray–Hervella classes on some associated compact almost abelian solvmanifolds.</p></div>\",\"PeriodicalId\":8265,\"journal\":{\"name\":\"Annali di Matematica Pura ed Applicata\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annali di Matematica Pura ed Applicata\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10231-023-01392-1\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annali di Matematica Pura ed Applicata","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10231-023-01392-1","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

近似非等边李群是一个可解李群,它有一个标度为一的正常非等边子群。我们描述了几乎非等边李群上的几乎赫米特结构,其中的几乎复结构相对于赫米特度量是调和的。此外,我们还将近乎赫米提结构的格雷-赫维拉分类法应用于近乎无常李群族。我们在一些相关的紧凑近无常索曼菲尔德上提供了几个不同格雷-赫维拉类的谐和近复结构的例子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Harmonic almost complex structures on almost abelian Lie groups and solvmanifolds

An almost abelian Lie group is a solvable Lie group with a codimension one normal abelian subgroup. We characterize almost Hermitian structures on almost abelian Lie groups where the almost complex structure is harmonic with respect to the Hermitian metric. Also, we adapt the Gray–Hervella classification of almost Hermitian structures to the family of almost abelian Lie groups. We provide several examples of harmonic almost complex structures in different Gray–Hervella classes on some associated compact almost abelian solvmanifolds.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.10
自引率
10.00%
发文量
99
审稿时长
>12 weeks
期刊介绍: This journal, the oldest scientific periodical in Italy, was originally edited by Barnaba Tortolini and Francesco Brioschi and has appeared since 1850. Nowadays it is managed by a nonprofit organization, the Fondazione Annali di Matematica Pura ed Applicata, c.o. Dipartimento di Matematica "U. Dini", viale Morgagni 67A, 50134 Firenze, Italy, e-mail annali@math.unifi.it). A board of Italian university professors governs the Fondazione and appoints the editors of the journal, whose responsibility it is to supervise the refereeing process. The names of governors and editors appear on the front page of each issue. Their addresses appear in the title pages of each issue.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信