{"title":"带电粒子系统和导向中心系统的对称自适应高阶能量守恒方法","authors":"Beibei Zhu, Hongji Zhou","doi":"10.3390/sym15111969","DOIUrl":null,"url":null,"abstract":"We propose higher-order adaptive energy-preserving methods for a charged particle system and a guiding center system. The higher-order energy-preserving methods are symmetric and are constructed by composing the second-order energy-preserving methods based on the averaged vector field. In order to overcome the energy drift problem that occurs in the energy-preserving methods based on the average vector field, we develop two adaptive algorithms for the higher-order energy-preserving methods. The two adaptive algorithms are developed based on using variable points of Gauss–Legendre’s quadrature rule and using two different stepsizes. The numerical results show that the two adaptive algorithms behave better in phase portrait and energy conservation than the Runge–Kutta methods. Moreover, it is shown that the energy errors obtained by the two adaptive algorithms can be bounded by the machine precision over long time and do not show energy drift.","PeriodicalId":48874,"journal":{"name":"Symmetry-Basel","volume":"53 4","pages":"0"},"PeriodicalIF":2.2000,"publicationDate":"2023-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Symmetric Adaptive Higher-Order Energy-Preserving Methods for a Charged Particle System and Guiding Center System\",\"authors\":\"Beibei Zhu, Hongji Zhou\",\"doi\":\"10.3390/sym15111969\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose higher-order adaptive energy-preserving methods for a charged particle system and a guiding center system. The higher-order energy-preserving methods are symmetric and are constructed by composing the second-order energy-preserving methods based on the averaged vector field. In order to overcome the energy drift problem that occurs in the energy-preserving methods based on the average vector field, we develop two adaptive algorithms for the higher-order energy-preserving methods. The two adaptive algorithms are developed based on using variable points of Gauss–Legendre’s quadrature rule and using two different stepsizes. The numerical results show that the two adaptive algorithms behave better in phase portrait and energy conservation than the Runge–Kutta methods. Moreover, it is shown that the energy errors obtained by the two adaptive algorithms can be bounded by the machine precision over long time and do not show energy drift.\",\"PeriodicalId\":48874,\"journal\":{\"name\":\"Symmetry-Basel\",\"volume\":\"53 4\",\"pages\":\"0\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2023-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Symmetry-Basel\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/sym15111969\",\"RegionNum\":3,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Symmetry-Basel","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/sym15111969","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Symmetric Adaptive Higher-Order Energy-Preserving Methods for a Charged Particle System and Guiding Center System
We propose higher-order adaptive energy-preserving methods for a charged particle system and a guiding center system. The higher-order energy-preserving methods are symmetric and are constructed by composing the second-order energy-preserving methods based on the averaged vector field. In order to overcome the energy drift problem that occurs in the energy-preserving methods based on the average vector field, we develop two adaptive algorithms for the higher-order energy-preserving methods. The two adaptive algorithms are developed based on using variable points of Gauss–Legendre’s quadrature rule and using two different stepsizes. The numerical results show that the two adaptive algorithms behave better in phase portrait and energy conservation than the Runge–Kutta methods. Moreover, it is shown that the energy errors obtained by the two adaptive algorithms can be bounded by the machine precision over long time and do not show energy drift.
期刊介绍:
Symmetry (ISSN 2073-8994), an international and interdisciplinary scientific journal, publishes reviews, regular research papers and short notes. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. There is no restriction on the length of the papers. Full experimental and/or methodical details must be provided, so that results can be reproduced.