{"title":"平均字符度和可解性的变化","authors":"Neda Ahanjideh, Zeinab Akhlaghi, Kamal Aziziheris","doi":"10.1007/s10231-023-01393-0","DOIUrl":null,"url":null,"abstract":"<div><p>Let <i>G</i> be a finite group, <span>\\(\\mathbb {F}\\)</span> be one of the fields <span>\\(\\mathbb {Q},\\mathbb {R}\\)</span> or <span>\\(\\mathbb {C}\\)</span>, and <i>N</i> be a non-trivial normal subgroup of <i>G</i>. Let <span>\\({\\textrm{acd}}^{*}_{{\\mathbb {F}}}(G)\\)</span> and <span>\\({\\textrm{acd}}_{{\\mathbb {F}}, \\textrm{even}}(G|N)\\)</span> be the average degree of all non-linear <span>\\(\\mathbb {F}\\)</span>-valued irreducible characters of <i>G</i> and of even degree <span>\\(\\mathbb {F}\\)</span>-valued irreducible characters of <i>G</i> whose kernels do not contain <i>N</i>, respectively. We assume the average of an empty set is zero for more convenience. In this paper we prove that if <span>\\(\\textrm{acd}^*_{\\mathbb {Q}}(G)< 9/2\\)</span> or <span>\\(0<\\textrm{acd}_{\\mathbb {Q},\\textrm{even}}(G|N)<4\\)</span>, then <i>G</i> is solvable. Moreover, setting <span>\\(\\mathbb {F} \\in \\{\\mathbb {R},\\mathbb {C}\\}\\)</span>, we obtain the solvability of <i>G</i> by assuming <span>\\({\\textrm{acd}}^{*}_{{\\mathbb {F}}}(G)<29/8\\)</span> or <span>\\(0<{\\textrm{acd}}_{{\\mathbb {F}}, \\textrm{even}}(G|N)<7/2\\)</span>, and we conclude the solvability of <i>N</i> when <span>\\(0<{\\textrm{acd}}_{{\\mathbb {F}}, \\textrm{even}}(G|N)<18/5\\)</span>. Replacing <i>N</i> by <i>G</i> in <span>\\({\\textrm{acd}}_{{\\mathbb {F}}, \\textrm{even}}(G|N)\\)</span> gives us an extended form of a result by Moreto and Nguyen. Examples are given to show that all the bounds are sharp.</p></div>","PeriodicalId":8265,"journal":{"name":"Annali di Matematica Pura ed Applicata","volume":"203 3","pages":"1061 - 1092"},"PeriodicalIF":1.0000,"publicationDate":"2023-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Variations on average character degrees and solvability\",\"authors\":\"Neda Ahanjideh, Zeinab Akhlaghi, Kamal Aziziheris\",\"doi\":\"10.1007/s10231-023-01393-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Let <i>G</i> be a finite group, <span>\\\\(\\\\mathbb {F}\\\\)</span> be one of the fields <span>\\\\(\\\\mathbb {Q},\\\\mathbb {R}\\\\)</span> or <span>\\\\(\\\\mathbb {C}\\\\)</span>, and <i>N</i> be a non-trivial normal subgroup of <i>G</i>. Let <span>\\\\({\\\\textrm{acd}}^{*}_{{\\\\mathbb {F}}}(G)\\\\)</span> and <span>\\\\({\\\\textrm{acd}}_{{\\\\mathbb {F}}, \\\\textrm{even}}(G|N)\\\\)</span> be the average degree of all non-linear <span>\\\\(\\\\mathbb {F}\\\\)</span>-valued irreducible characters of <i>G</i> and of even degree <span>\\\\(\\\\mathbb {F}\\\\)</span>-valued irreducible characters of <i>G</i> whose kernels do not contain <i>N</i>, respectively. We assume the average of an empty set is zero for more convenience. In this paper we prove that if <span>\\\\(\\\\textrm{acd}^*_{\\\\mathbb {Q}}(G)< 9/2\\\\)</span> or <span>\\\\(0<\\\\textrm{acd}_{\\\\mathbb {Q},\\\\textrm{even}}(G|N)<4\\\\)</span>, then <i>G</i> is solvable. Moreover, setting <span>\\\\(\\\\mathbb {F} \\\\in \\\\{\\\\mathbb {R},\\\\mathbb {C}\\\\}\\\\)</span>, we obtain the solvability of <i>G</i> by assuming <span>\\\\({\\\\textrm{acd}}^{*}_{{\\\\mathbb {F}}}(G)<29/8\\\\)</span> or <span>\\\\(0<{\\\\textrm{acd}}_{{\\\\mathbb {F}}, \\\\textrm{even}}(G|N)<7/2\\\\)</span>, and we conclude the solvability of <i>N</i> when <span>\\\\(0<{\\\\textrm{acd}}_{{\\\\mathbb {F}}, \\\\textrm{even}}(G|N)<18/5\\\\)</span>. Replacing <i>N</i> by <i>G</i> in <span>\\\\({\\\\textrm{acd}}_{{\\\\mathbb {F}}, \\\\textrm{even}}(G|N)\\\\)</span> gives us an extended form of a result by Moreto and Nguyen. Examples are given to show that all the bounds are sharp.</p></div>\",\"PeriodicalId\":8265,\"journal\":{\"name\":\"Annali di Matematica Pura ed Applicata\",\"volume\":\"203 3\",\"pages\":\"1061 - 1092\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annali di Matematica Pura ed Applicata\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10231-023-01393-0\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annali di Matematica Pura ed Applicata","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10231-023-01393-0","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
让 G 是一个有限群,\(\mathbb {F}\) 是域 \(\mathbb {Q},\mathbb {R}\) 或 \(\mathbb {C}\) 中的一个,N 是 G 的一个非难正则子群。让 \({\textrm{acd}}^{*}_{{\mathbb {F}}}(G)\) 和 \({\textrm{acd}}_{{\mathbb {F}}、\分别是 G 的所有非线性 \(\mathbb {F}\)-valued 不可还原字符的平均度,以及 G 的内核不包含 N 的偶数度 \(\mathbb {F}\)-valued 不可还原字符的平均度。为了方便起见,我们假设空集的平均值为零。本文将证明,如果 \(\textrm{acd}^*_{\mathbb {Q}}(G)< 9/2\) 或 \(0<\textrm{acd}_{\mathbb {Q},\textrm{even}}}(G|N)<4\), 那么 G 是可解的。此外,设置 \(\mathbb {F} \in \{\mathbb {R},\mathbb {C}\}), 我们通过假设 \({textrm{acd}^{*}_{{\mathbb {F}}(G)<29/8\) or\(0<;(0<{textrm{acd}}_{{mathbb{F}}}, \textrm{even}}}(G|N)<7/2\) 时,我们得出 N 的可解性结论。在 \({\textrm{acd}}_{\{mathbb {F}}, \textrm{even}}}(G|N)\)中用 G 替换 N 可以得到莫雷托和阮的一个结果的扩展形式。举例说明了所有边界都是尖锐的。
Variations on average character degrees and solvability
Let G be a finite group, \(\mathbb {F}\) be one of the fields \(\mathbb {Q},\mathbb {R}\) or \(\mathbb {C}\), and N be a non-trivial normal subgroup of G. Let \({\textrm{acd}}^{*}_{{\mathbb {F}}}(G)\) and \({\textrm{acd}}_{{\mathbb {F}}, \textrm{even}}(G|N)\) be the average degree of all non-linear \(\mathbb {F}\)-valued irreducible characters of G and of even degree \(\mathbb {F}\)-valued irreducible characters of G whose kernels do not contain N, respectively. We assume the average of an empty set is zero for more convenience. In this paper we prove that if \(\textrm{acd}^*_{\mathbb {Q}}(G)< 9/2\) or \(0<\textrm{acd}_{\mathbb {Q},\textrm{even}}(G|N)<4\), then G is solvable. Moreover, setting \(\mathbb {F} \in \{\mathbb {R},\mathbb {C}\}\), we obtain the solvability of G by assuming \({\textrm{acd}}^{*}_{{\mathbb {F}}}(G)<29/8\) or \(0<{\textrm{acd}}_{{\mathbb {F}}, \textrm{even}}(G|N)<7/2\), and we conclude the solvability of N when \(0<{\textrm{acd}}_{{\mathbb {F}}, \textrm{even}}(G|N)<18/5\). Replacing N by G in \({\textrm{acd}}_{{\mathbb {F}}, \textrm{even}}(G|N)\) gives us an extended form of a result by Moreto and Nguyen. Examples are given to show that all the bounds are sharp.
期刊介绍:
This journal, the oldest scientific periodical in Italy, was originally edited by Barnaba Tortolini and Francesco Brioschi and has appeared since 1850. Nowadays it is managed by a nonprofit organization, the Fondazione Annali di Matematica Pura ed Applicata, c.o. Dipartimento di Matematica "U. Dini", viale Morgagni 67A, 50134 Firenze, Italy, e-mail annali@math.unifi.it).
A board of Italian university professors governs the Fondazione and appoints the editors of the journal, whose responsibility it is to supervise the refereeing process. The names of governors and editors appear on the front page of each issue. Their addresses appear in the title pages of each issue.