GEBA:基于梯度误差的激活函数逼近

IF 3.7 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Changmin Ye;Doo Seok Jeong
{"title":"GEBA:基于梯度误差的激活函数逼近","authors":"Changmin Ye;Doo Seok Jeong","doi":"10.1109/JETCAS.2023.3328890","DOIUrl":null,"url":null,"abstract":"Computing-in-memory (CIM) macros aiming at accelerating deep learning operations at low power need activation function (AF) units on the same die to reduce their host-dependency. Versatile CIM macros need to include reconfigurable AF units at high precision and high efficiency in hardware usage. To this end, we propose the gradient-error-based approximation (GEBA) of AFs, which approximates various types of AFs in discrete input domains at high precision. GEBA reduces the approximation error by ca. 49.7%, 67.3%, 81.4%, 60.1% (for sigmoid, tanh, GELU, swish in FP32), compared with the uniform input-based approximation using the same memory as GEBA.","PeriodicalId":48827,"journal":{"name":"IEEE Journal on Emerging and Selected Topics in Circuits and Systems","volume":"13 4","pages":"1106-1113"},"PeriodicalIF":3.7000,"publicationDate":"2023-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"GEBA: Gradient-Error-Based Approximation of Activation Functions\",\"authors\":\"Changmin Ye;Doo Seok Jeong\",\"doi\":\"10.1109/JETCAS.2023.3328890\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Computing-in-memory (CIM) macros aiming at accelerating deep learning operations at low power need activation function (AF) units on the same die to reduce their host-dependency. Versatile CIM macros need to include reconfigurable AF units at high precision and high efficiency in hardware usage. To this end, we propose the gradient-error-based approximation (GEBA) of AFs, which approximates various types of AFs in discrete input domains at high precision. GEBA reduces the approximation error by ca. 49.7%, 67.3%, 81.4%, 60.1% (for sigmoid, tanh, GELU, swish in FP32), compared with the uniform input-based approximation using the same memory as GEBA.\",\"PeriodicalId\":48827,\"journal\":{\"name\":\"IEEE Journal on Emerging and Selected Topics in Circuits and Systems\",\"volume\":\"13 4\",\"pages\":\"1106-1113\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2023-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Journal on Emerging and Selected Topics in Circuits and Systems\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10302226/\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal on Emerging and Selected Topics in Circuits and Systems","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10302226/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

旨在以低功耗加速深度学习操作的内存计算(CIM)宏需要同一芯片上的激活函数(AF)单元,以减少对主机的依赖。多功能 CIM 宏需要包含可重新配置的高精度 AF 单元,并提高硬件使用效率。为此,我们提出了基于梯度误差的 AF 近似 (GEBA),可以高精度逼近离散输入域中的各类 AF。与使用与 GEBA 相同内存的基于均匀输入的近似方法相比,GEBA 将近似误差分别降低了约 49.7%、67.3%、81.4% 和 60.1%(对于 FP32 中的 sigmoid、tanh、GELU 和 swish)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
GEBA: Gradient-Error-Based Approximation of Activation Functions
Computing-in-memory (CIM) macros aiming at accelerating deep learning operations at low power need activation function (AF) units on the same die to reduce their host-dependency. Versatile CIM macros need to include reconfigurable AF units at high precision and high efficiency in hardware usage. To this end, we propose the gradient-error-based approximation (GEBA) of AFs, which approximates various types of AFs in discrete input domains at high precision. GEBA reduces the approximation error by ca. 49.7%, 67.3%, 81.4%, 60.1% (for sigmoid, tanh, GELU, swish in FP32), compared with the uniform input-based approximation using the same memory as GEBA.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.50
自引率
2.20%
发文量
86
期刊介绍: The IEEE Journal on Emerging and Selected Topics in Circuits and Systems is published quarterly and solicits, with particular emphasis on emerging areas, special issues on topics that cover the entire scope of the IEEE Circuits and Systems (CAS) Society, namely the theory, analysis, design, tools, and implementation of circuits and systems, spanning their theoretical foundations, applications, and architectures for signal and information processing.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信