基于卷积深度神经网络的聚类图像和特征支持分类器(CIFC)技术脑肿瘤诊断。

IF 1 4区 生物学 Q3 BIOLOGY
Parameswari Alagarsamy, Bhavani Sridharan, Vinoth Kumar Kalimuthu
{"title":"基于卷积深度神经网络的聚类图像和特征支持分类器(CIFC)技术脑肿瘤诊断。","authors":"Parameswari Alagarsamy, Bhavani Sridharan, Vinoth Kumar Kalimuthu","doi":"10.1590/1678-4324-2023230012","DOIUrl":null,"url":null,"abstract":"HIGHLIGHTS Medical image analysis research has been performed to aid in the detection of malignant brain tumors. OSFC, OSIC and CIFC performed well and produced better results in classification. The performance metric outcome of the proposed system is 99.76% of sensitivity, 98.04% of specificity and 99.87% of accuracy.","PeriodicalId":9169,"journal":{"name":"Brazilian Archives of Biology and Technology","volume":"5 1","pages":"0"},"PeriodicalIF":1.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Convolutional Deep Neural Network Based Brain TumorDiagnoses Using Clustered Image and Feature-Supported Classifier (CIFC)Technique.\",\"authors\":\"Parameswari Alagarsamy, Bhavani Sridharan, Vinoth Kumar Kalimuthu\",\"doi\":\"10.1590/1678-4324-2023230012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"HIGHLIGHTS Medical image analysis research has been performed to aid in the detection of malignant brain tumors. OSFC, OSIC and CIFC performed well and produced better results in classification. The performance metric outcome of the proposed system is 99.76% of sensitivity, 98.04% of specificity and 99.87% of accuracy.\",\"PeriodicalId\":9169,\"journal\":{\"name\":\"Brazilian Archives of Biology and Technology\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Brazilian Archives of Biology and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1590/1678-4324-2023230012\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brazilian Archives of Biology and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1590/1678-4324-2023230012","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

医学图像分析研究已经进行,以帮助检测恶性脑肿瘤。OSFC、OSIC和CIFC表现较好,分类效果较好。该系统的灵敏度为99.76%,特异性为98.04%,准确度为99.87%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Convolutional Deep Neural Network Based Brain TumorDiagnoses Using Clustered Image and Feature-Supported Classifier (CIFC)Technique.
HIGHLIGHTS Medical image analysis research has been performed to aid in the detection of malignant brain tumors. OSFC, OSIC and CIFC performed well and produced better results in classification. The performance metric outcome of the proposed system is 99.76% of sensitivity, 98.04% of specificity and 99.87% of accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.80
自引率
0.00%
发文量
116
审稿时长
3 months
期刊介绍: Information not localized
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信