{"title":"利用z形持久计算2参数持久模块的广义秩不变量及其应用","authors":"Tamal K. Dey, Woojin Kim, Facundo Mémoli","doi":"10.1007/s00454-023-00584-z","DOIUrl":null,"url":null,"abstract":"Abstract The notion of generalized rank in the context of multiparameter persistence has become an important ingredient for defining interesting homological structures such as generalized persistence diagrams. However, its efficient computation has not yet been studied in the literature. We show that the generalized rank over a finite interval I of a $$\\textbf{Z}^2$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:msup> <mml:mi>Z</mml:mi> <mml:mn>2</mml:mn> </mml:msup> </mml:math> -indexed persistence module M is equal to the generalized rank of the zigzag module that is induced on a certain path in I tracing mostly its boundary. Hence, we can compute the generalized rank of M over I by computing the barcode of the zigzag module obtained by restricting to that path. If M is the homology of a bifiltration F of $$t$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mi>t</mml:mi> </mml:math> simplices (while accounting for multi-criticality) and I consists of $$t$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mi>t</mml:mi> </mml:math> points, this computation takes $$O(t^\\omega )$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>O</mml:mi> <mml:mo>(</mml:mo> <mml:msup> <mml:mi>t</mml:mi> <mml:mi>ω</mml:mi> </mml:msup> <mml:mo>)</mml:mo> </mml:mrow> </mml:math> time where $$\\omega \\in [2,2.373)$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>ω</mml:mi> <mml:mo>∈</mml:mo> <mml:mo>[</mml:mo> <mml:mn>2</mml:mn> <mml:mo>,</mml:mo> <mml:mn>2.373</mml:mn> <mml:mo>)</mml:mo> </mml:mrow> </mml:math> is the exponent of matrix multiplication. We apply this result to obtain an improved algorithm for the following problem. Given a bifiltration inducing a module M , determine whether M is interval decomposable and, if so, compute all intervals supporting its indecomposable summands.","PeriodicalId":356162,"journal":{"name":"Discrete and Computational Geometry","volume":"609 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Computing Generalized Rank Invariant for 2-Parameter Persistence Modules via Zigzag Persistence and Its Applications\",\"authors\":\"Tamal K. Dey, Woojin Kim, Facundo Mémoli\",\"doi\":\"10.1007/s00454-023-00584-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The notion of generalized rank in the context of multiparameter persistence has become an important ingredient for defining interesting homological structures such as generalized persistence diagrams. However, its efficient computation has not yet been studied in the literature. We show that the generalized rank over a finite interval I of a $$\\\\textbf{Z}^2$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:msup> <mml:mi>Z</mml:mi> <mml:mn>2</mml:mn> </mml:msup> </mml:math> -indexed persistence module M is equal to the generalized rank of the zigzag module that is induced on a certain path in I tracing mostly its boundary. Hence, we can compute the generalized rank of M over I by computing the barcode of the zigzag module obtained by restricting to that path. If M is the homology of a bifiltration F of $$t$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mi>t</mml:mi> </mml:math> simplices (while accounting for multi-criticality) and I consists of $$t$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mi>t</mml:mi> </mml:math> points, this computation takes $$O(t^\\\\omega )$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mrow> <mml:mi>O</mml:mi> <mml:mo>(</mml:mo> <mml:msup> <mml:mi>t</mml:mi> <mml:mi>ω</mml:mi> </mml:msup> <mml:mo>)</mml:mo> </mml:mrow> </mml:math> time where $$\\\\omega \\\\in [2,2.373)$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mrow> <mml:mi>ω</mml:mi> <mml:mo>∈</mml:mo> <mml:mo>[</mml:mo> <mml:mn>2</mml:mn> <mml:mo>,</mml:mo> <mml:mn>2.373</mml:mn> <mml:mo>)</mml:mo> </mml:mrow> </mml:math> is the exponent of matrix multiplication. We apply this result to obtain an improved algorithm for the following problem. Given a bifiltration inducing a module M , determine whether M is interval decomposable and, if so, compute all intervals supporting its indecomposable summands.\",\"PeriodicalId\":356162,\"journal\":{\"name\":\"Discrete and Computational Geometry\",\"volume\":\"609 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete and Computational Geometry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s00454-023-00584-z\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete and Computational Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00454-023-00584-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
在多参数持久化的背景下,广义秩的概念已经成为定义有趣的同构结构(如广义持久化图)的重要组成部分。然而,其高效计算尚未在文献中得到研究。我们证明了一个$$\textbf{Z}^2$$ Z 2索引的持久模M在有限区间I上的广义秩等于在I跟踪其边界的某条路径上产生的之字形模的广义秩。因此,我们可以通过计算限制在该路径上得到的之字形模块的条形码来计算M / I的广义秩。如果M是$$t$$ t简化(同时考虑多重临界性)的分滤F的同态,I由$$t$$ t个点组成,则该计算需要$$O(t^\omega )$$ O (t ω)时间,其中$$\omega \in [2,2.373)$$ ω∈[2,2.373]是矩阵乘法的指数。我们将这一结果应用于以下问题的改进算法。给定一个导致模块M的过滤,确定M是否可区间分解,如果是,计算支持其不可分解和的所有区间。
Computing Generalized Rank Invariant for 2-Parameter Persistence Modules via Zigzag Persistence and Its Applications
Abstract The notion of generalized rank in the context of multiparameter persistence has become an important ingredient for defining interesting homological structures such as generalized persistence diagrams. However, its efficient computation has not yet been studied in the literature. We show that the generalized rank over a finite interval I of a $$\textbf{Z}^2$$ Z2 -indexed persistence module M is equal to the generalized rank of the zigzag module that is induced on a certain path in I tracing mostly its boundary. Hence, we can compute the generalized rank of M over I by computing the barcode of the zigzag module obtained by restricting to that path. If M is the homology of a bifiltration F of $$t$$ t simplices (while accounting for multi-criticality) and I consists of $$t$$ t points, this computation takes $$O(t^\omega )$$ O(tω) time where $$\omega \in [2,2.373)$$ ω∈[2,2.373) is the exponent of matrix multiplication. We apply this result to obtain an improved algorithm for the following problem. Given a bifiltration inducing a module M , determine whether M is interval decomposable and, if so, compute all intervals supporting its indecomposable summands.