{"title":"用于图像识别的基于 MXene 的全喷涂高性能柔性压阻传感器","authors":"Zhi-Dong Zhang , Xue-Feng Zhao , Qing-Chao Zhang , Jie Liang , Hui-Nan Zhang , Tian-Sheng Zhang , Chen-Yang Xue","doi":"10.1016/j.nanoms.2023.06.001","DOIUrl":null,"url":null,"abstract":"<div><p>High-performance flexible pressure sensors provide comprehensive tactile perception and are applied in human activity monitoring, soft robotics, medical treatment, and human-computer interface. However, these flexible pressure sensors require extensive nano-architectural design and complicated manufacturing and are time-consuming. Herein, a highly sensitive, flexible piezoresistive tactile sensor is designed and fabricated, consisting of three main parts: the randomly distributed microstructure on T-ZnOw/PDMS film as a top substrate, multilayer Ti<sub>3</sub>C<sub>2</sub>-MXene film as an intermediate conductive filler, and the few-layer Ti<sub>3</sub>C<sub>2</sub>-MXene nanosheet-based interdigital electrodes as the bottom substrate. The MXene-based piezoresistive sensor with randomly distributed microstructure exhibits a high sensitivity over a broad pressure range (less than 10 kPa for 175 kPa<sup>−1</sup>) and possesses an out-standing permanence of up to 5000 cycles. Moreover, a 16-pixel sensor array is designed, and its potential applications in visualizing pressure distribution and an example of tactile feedback are demonstrated. This fully sprayed MXene-based pressure sensor, with high sensitivity and excellent durability, can be widely used in, electronic skin, intelligent robots, and many other emerging technologies.</p></div>","PeriodicalId":33573,"journal":{"name":"Nano Materials Science","volume":"6 1","pages":"Pages 77-85"},"PeriodicalIF":9.9000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2589965123000223/pdfft?md5=a6a010885e3ca40445bcd1f4d3073cfc&pid=1-s2.0-S2589965123000223-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Fully sprayed MXene-based high-performance flexible piezoresistive sensor for image recognition\",\"authors\":\"Zhi-Dong Zhang , Xue-Feng Zhao , Qing-Chao Zhang , Jie Liang , Hui-Nan Zhang , Tian-Sheng Zhang , Chen-Yang Xue\",\"doi\":\"10.1016/j.nanoms.2023.06.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>High-performance flexible pressure sensors provide comprehensive tactile perception and are applied in human activity monitoring, soft robotics, medical treatment, and human-computer interface. However, these flexible pressure sensors require extensive nano-architectural design and complicated manufacturing and are time-consuming. Herein, a highly sensitive, flexible piezoresistive tactile sensor is designed and fabricated, consisting of three main parts: the randomly distributed microstructure on T-ZnOw/PDMS film as a top substrate, multilayer Ti<sub>3</sub>C<sub>2</sub>-MXene film as an intermediate conductive filler, and the few-layer Ti<sub>3</sub>C<sub>2</sub>-MXene nanosheet-based interdigital electrodes as the bottom substrate. The MXene-based piezoresistive sensor with randomly distributed microstructure exhibits a high sensitivity over a broad pressure range (less than 10 kPa for 175 kPa<sup>−1</sup>) and possesses an out-standing permanence of up to 5000 cycles. Moreover, a 16-pixel sensor array is designed, and its potential applications in visualizing pressure distribution and an example of tactile feedback are demonstrated. This fully sprayed MXene-based pressure sensor, with high sensitivity and excellent durability, can be widely used in, electronic skin, intelligent robots, and many other emerging technologies.</p></div>\",\"PeriodicalId\":33573,\"journal\":{\"name\":\"Nano Materials Science\",\"volume\":\"6 1\",\"pages\":\"Pages 77-85\"},\"PeriodicalIF\":9.9000,\"publicationDate\":\"2024-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2589965123000223/pdfft?md5=a6a010885e3ca40445bcd1f4d3073cfc&pid=1-s2.0-S2589965123000223-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano Materials Science\",\"FirstCategoryId\":\"1089\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2589965123000223\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Materials Science","FirstCategoryId":"1089","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2589965123000223","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Engineering","Score":null,"Total":0}
Fully sprayed MXene-based high-performance flexible piezoresistive sensor for image recognition
High-performance flexible pressure sensors provide comprehensive tactile perception and are applied in human activity monitoring, soft robotics, medical treatment, and human-computer interface. However, these flexible pressure sensors require extensive nano-architectural design and complicated manufacturing and are time-consuming. Herein, a highly sensitive, flexible piezoresistive tactile sensor is designed and fabricated, consisting of three main parts: the randomly distributed microstructure on T-ZnOw/PDMS film as a top substrate, multilayer Ti3C2-MXene film as an intermediate conductive filler, and the few-layer Ti3C2-MXene nanosheet-based interdigital electrodes as the bottom substrate. The MXene-based piezoresistive sensor with randomly distributed microstructure exhibits a high sensitivity over a broad pressure range (less than 10 kPa for 175 kPa−1) and possesses an out-standing permanence of up to 5000 cycles. Moreover, a 16-pixel sensor array is designed, and its potential applications in visualizing pressure distribution and an example of tactile feedback are demonstrated. This fully sprayed MXene-based pressure sensor, with high sensitivity and excellent durability, can be widely used in, electronic skin, intelligent robots, and many other emerging technologies.
期刊介绍:
Nano Materials Science (NMS) is an international and interdisciplinary, open access, scholarly journal. NMS publishes peer-reviewed original articles and reviews on nanoscale material science and nanometer devices, with topics encompassing preparation and processing; high-throughput characterization; material performance evaluation and application of material characteristics such as the microstructure and properties of one-dimensional, two-dimensional, and three-dimensional nanostructured and nanofunctional materials; design, preparation, and processing techniques; and performance evaluation technology and nanometer device applications.