用于图像识别的基于 MXene 的全喷涂高性能柔性压阻传感器

IF 9.9 2区 材料科学 Q1 Engineering
Zhi-Dong Zhang , Xue-Feng Zhao , Qing-Chao Zhang , Jie Liang , Hui-Nan Zhang , Tian-Sheng Zhang , Chen-Yang Xue
{"title":"用于图像识别的基于 MXene 的全喷涂高性能柔性压阻传感器","authors":"Zhi-Dong Zhang ,&nbsp;Xue-Feng Zhao ,&nbsp;Qing-Chao Zhang ,&nbsp;Jie Liang ,&nbsp;Hui-Nan Zhang ,&nbsp;Tian-Sheng Zhang ,&nbsp;Chen-Yang Xue","doi":"10.1016/j.nanoms.2023.06.001","DOIUrl":null,"url":null,"abstract":"<div><p>High-performance flexible pressure sensors provide comprehensive tactile perception and are applied in human activity monitoring, soft robotics, medical treatment, and human-computer interface. However, these flexible pressure sensors require extensive nano-architectural design and complicated manufacturing and are time-consuming. Herein, a highly sensitive, flexible piezoresistive tactile sensor is designed and fabricated, consisting of three main parts: the randomly distributed microstructure on T-ZnOw/PDMS film as a top substrate, multilayer Ti<sub>3</sub>C<sub>2</sub>-MXene film as an intermediate conductive filler, and the few-layer Ti<sub>3</sub>C<sub>2</sub>-MXene nanosheet-based interdigital electrodes as the bottom substrate. The MXene-based piezoresistive sensor with randomly distributed microstructure exhibits a high sensitivity over a broad pressure range (less than 10 ​kPa for 175 ​kPa<sup>−1</sup>) and possesses an out-standing permanence of up to 5000 cycles. Moreover, a 16-pixel sensor array is designed, and its potential applications in visualizing pressure distribution and an example of tactile feedback are demonstrated. This fully sprayed MXene-based pressure sensor, with high sensitivity and excellent durability, can be widely used in, electronic skin, intelligent robots, and many other emerging technologies.</p></div>","PeriodicalId":33573,"journal":{"name":"Nano Materials Science","volume":"6 1","pages":"Pages 77-85"},"PeriodicalIF":9.9000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2589965123000223/pdfft?md5=a6a010885e3ca40445bcd1f4d3073cfc&pid=1-s2.0-S2589965123000223-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Fully sprayed MXene-based high-performance flexible piezoresistive sensor for image recognition\",\"authors\":\"Zhi-Dong Zhang ,&nbsp;Xue-Feng Zhao ,&nbsp;Qing-Chao Zhang ,&nbsp;Jie Liang ,&nbsp;Hui-Nan Zhang ,&nbsp;Tian-Sheng Zhang ,&nbsp;Chen-Yang Xue\",\"doi\":\"10.1016/j.nanoms.2023.06.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>High-performance flexible pressure sensors provide comprehensive tactile perception and are applied in human activity monitoring, soft robotics, medical treatment, and human-computer interface. However, these flexible pressure sensors require extensive nano-architectural design and complicated manufacturing and are time-consuming. Herein, a highly sensitive, flexible piezoresistive tactile sensor is designed and fabricated, consisting of three main parts: the randomly distributed microstructure on T-ZnOw/PDMS film as a top substrate, multilayer Ti<sub>3</sub>C<sub>2</sub>-MXene film as an intermediate conductive filler, and the few-layer Ti<sub>3</sub>C<sub>2</sub>-MXene nanosheet-based interdigital electrodes as the bottom substrate. The MXene-based piezoresistive sensor with randomly distributed microstructure exhibits a high sensitivity over a broad pressure range (less than 10 ​kPa for 175 ​kPa<sup>−1</sup>) and possesses an out-standing permanence of up to 5000 cycles. Moreover, a 16-pixel sensor array is designed, and its potential applications in visualizing pressure distribution and an example of tactile feedback are demonstrated. This fully sprayed MXene-based pressure sensor, with high sensitivity and excellent durability, can be widely used in, electronic skin, intelligent robots, and many other emerging technologies.</p></div>\",\"PeriodicalId\":33573,\"journal\":{\"name\":\"Nano Materials Science\",\"volume\":\"6 1\",\"pages\":\"Pages 77-85\"},\"PeriodicalIF\":9.9000,\"publicationDate\":\"2024-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2589965123000223/pdfft?md5=a6a010885e3ca40445bcd1f4d3073cfc&pid=1-s2.0-S2589965123000223-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano Materials Science\",\"FirstCategoryId\":\"1089\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2589965123000223\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Materials Science","FirstCategoryId":"1089","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2589965123000223","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

高性能柔性压力传感器可提供全面的触觉感知,可应用于人体活动监测、软机器人、医疗和人机界面等领域。然而,这些柔性压力传感器需要大量的纳米架构设计和复杂的制造工艺,耗时较长。本文设计并制造了一种高灵敏度、柔性压阻式触觉传感器,主要由三部分组成:T-ZnOw/PDMS 薄膜上的随机分布微结构作为顶层基底,多层 Ti3C2-MXene 薄膜作为中间导电填料,少层 Ti3C2-MXene 纳米片作为底层基底。这种基于 MXene 的压阻传感器具有随机分布的微观结构,在很宽的压力范围内(175 kPa-1 时小于 10 kPa)具有很高的灵敏度,并且具有高达 5000 次循环的持久性。此外,还设计了一个 16 像素传感器阵列,并展示了其在压力分布可视化方面的潜在应用和触觉反馈示例。这种基于 MXene 的全喷涂压力传感器具有高灵敏度和出色的耐用性,可广泛应用于电子皮肤、智能机器人和许多其他新兴技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fully sprayed MXene-based high-performance flexible piezoresistive sensor for image recognition

High-performance flexible pressure sensors provide comprehensive tactile perception and are applied in human activity monitoring, soft robotics, medical treatment, and human-computer interface. However, these flexible pressure sensors require extensive nano-architectural design and complicated manufacturing and are time-consuming. Herein, a highly sensitive, flexible piezoresistive tactile sensor is designed and fabricated, consisting of three main parts: the randomly distributed microstructure on T-ZnOw/PDMS film as a top substrate, multilayer Ti3C2-MXene film as an intermediate conductive filler, and the few-layer Ti3C2-MXene nanosheet-based interdigital electrodes as the bottom substrate. The MXene-based piezoresistive sensor with randomly distributed microstructure exhibits a high sensitivity over a broad pressure range (less than 10 ​kPa for 175 ​kPa−1) and possesses an out-standing permanence of up to 5000 cycles. Moreover, a 16-pixel sensor array is designed, and its potential applications in visualizing pressure distribution and an example of tactile feedback are demonstrated. This fully sprayed MXene-based pressure sensor, with high sensitivity and excellent durability, can be widely used in, electronic skin, intelligent robots, and many other emerging technologies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nano Materials Science
Nano Materials Science Engineering-Mechanics of Materials
CiteScore
20.90
自引率
3.00%
发文量
294
审稿时长
9 weeks
期刊介绍: Nano Materials Science (NMS) is an international and interdisciplinary, open access, scholarly journal. NMS publishes peer-reviewed original articles and reviews on nanoscale material science and nanometer devices, with topics encompassing preparation and processing; high-throughput characterization; material performance evaluation and application of material characteristics such as the microstructure and properties of one-dimensional, two-dimensional, and three-dimensional nanostructured and nanofunctional materials; design, preparation, and processing techniques; and performance evaluation technology and nanometer device applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信