预测各向异性粘土中埋设管道隆升能力的机器学习回归方法

IF 4.8 Q2 ENERGY & FUELS
Van Qui Lai , Khamnoy Kounlavong , Suraparb Keawsawasvong , Truong Son Bui , Ngoc Thi Huynh
{"title":"预测各向异性粘土中埋设管道隆升能力的机器学习回归方法","authors":"Van Qui Lai ,&nbsp;Khamnoy Kounlavong ,&nbsp;Suraparb Keawsawasvong ,&nbsp;Truong Son Bui ,&nbsp;Ngoc Thi Huynh","doi":"10.1016/j.jpse.2023.100147","DOIUrl":null,"url":null,"abstract":"<div><p>The uplift capacity of pipeline systems in geotechnical engineering is influenced by internal loading and external factors, making it a significant consideration in pipeline design problems. Previous research has conducted experimental tests and numerical solutions to investigate the relationship between force and displacement or the resistance of pipelines in numerous soil media. This paper proposes a machine-learning regression technique to predict the uplift capacity of buried pipelines in anisotropic clays with parametric analysis. Specifically, the Multivariate Adaptive Regression Spline (MARS) is employed to establish the relationship between input parameters, namely the depth ratio (<em>H/D</em>), anisotropic strength ratio (<em>r</em><sub>e</sub>), load inclination (<em>β</em>), overburden factor (<em>γH/S</em><sub>uc</sub>), adhesion factor (<em>α</em>), and the output uplift resistance (<em>N</em>) obtained from the finite element limit analysis (FELA), utilizing the AUS material model integrated with the OptumG2 commercial program. Furthermore, the sensitivity analysis outcome shows the embedded depth ratio is the most critical parameter, followed by the anisotropic strength ratio, overburden factor, load inclination, and adhesion factor. Additionally, the shear velocity field contours show that when the depth ratio and the load inclination increase, the dissipation of shear changes. Design data visualizations, tables, graph contours, and empirical equations are created and can be utilized to aid in the development of practical designs.</p></div>","PeriodicalId":100824,"journal":{"name":"Journal of Pipeline Science and Engineering","volume":"4 1","pages":"Article 100147"},"PeriodicalIF":4.8000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2667143323000392/pdfft?md5=07bffd42498dbcf453fa6df57874078f&pid=1-s2.0-S2667143323000392-main.pdf","citationCount":"0","resultStr":"{\"title\":\"A machine learning regression approach for predicting uplift capacity of buried pipelines in anisotropic clays\",\"authors\":\"Van Qui Lai ,&nbsp;Khamnoy Kounlavong ,&nbsp;Suraparb Keawsawasvong ,&nbsp;Truong Son Bui ,&nbsp;Ngoc Thi Huynh\",\"doi\":\"10.1016/j.jpse.2023.100147\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The uplift capacity of pipeline systems in geotechnical engineering is influenced by internal loading and external factors, making it a significant consideration in pipeline design problems. Previous research has conducted experimental tests and numerical solutions to investigate the relationship between force and displacement or the resistance of pipelines in numerous soil media. This paper proposes a machine-learning regression technique to predict the uplift capacity of buried pipelines in anisotropic clays with parametric analysis. Specifically, the Multivariate Adaptive Regression Spline (MARS) is employed to establish the relationship between input parameters, namely the depth ratio (<em>H/D</em>), anisotropic strength ratio (<em>r</em><sub>e</sub>), load inclination (<em>β</em>), overburden factor (<em>γH/S</em><sub>uc</sub>), adhesion factor (<em>α</em>), and the output uplift resistance (<em>N</em>) obtained from the finite element limit analysis (FELA), utilizing the AUS material model integrated with the OptumG2 commercial program. Furthermore, the sensitivity analysis outcome shows the embedded depth ratio is the most critical parameter, followed by the anisotropic strength ratio, overburden factor, load inclination, and adhesion factor. Additionally, the shear velocity field contours show that when the depth ratio and the load inclination increase, the dissipation of shear changes. Design data visualizations, tables, graph contours, and empirical equations are created and can be utilized to aid in the development of practical designs.</p></div>\",\"PeriodicalId\":100824,\"journal\":{\"name\":\"Journal of Pipeline Science and Engineering\",\"volume\":\"4 1\",\"pages\":\"Article 100147\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2024-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2667143323000392/pdfft?md5=07bffd42498dbcf453fa6df57874078f&pid=1-s2.0-S2667143323000392-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Pipeline Science and Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2667143323000392\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pipeline Science and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667143323000392","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

岩土工程中管道系统的上浮能力受内部荷载和外部因素的影响,因此是管道设计问题中的一个重要考虑因素。以往的研究通过实验测试和数值求解来研究众多土壤介质中力与位移或管道阻力之间的关系。本文提出了一种机器学习回归技术,通过参数分析预测各向异性粘土中埋设管道的上浮能力。具体而言,本文采用了多元自适应回归样条曲线(MARS),利用集成了 OptumG2 商业程序的 AUS 材料模型,建立了输入参数(即深度比 (H/D)、各向异性强度比 (re)、荷载倾角 (β)、覆土系数 (γH/Suc)、粘附系数 (α))与有限元极限分析 (FELA) 得出的输出抗拔能力 (N) 之间的关系。此外,敏感性分析结果表明,嵌入深度比是最关键的参数,其次是各向异性强度比、覆土系数、荷载倾斜度和粘附系数。此外,剪切速度场等值线图显示,当深度比和荷载倾角增大时,剪切耗散也会发生变化。设计数据可视化、表格、等值线图和经验方程已经创建,可用于帮助开发实用设计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A machine learning regression approach for predicting uplift capacity of buried pipelines in anisotropic clays

The uplift capacity of pipeline systems in geotechnical engineering is influenced by internal loading and external factors, making it a significant consideration in pipeline design problems. Previous research has conducted experimental tests and numerical solutions to investigate the relationship between force and displacement or the resistance of pipelines in numerous soil media. This paper proposes a machine-learning regression technique to predict the uplift capacity of buried pipelines in anisotropic clays with parametric analysis. Specifically, the Multivariate Adaptive Regression Spline (MARS) is employed to establish the relationship between input parameters, namely the depth ratio (H/D), anisotropic strength ratio (re), load inclination (β), overburden factor (γH/Suc), adhesion factor (α), and the output uplift resistance (N) obtained from the finite element limit analysis (FELA), utilizing the AUS material model integrated with the OptumG2 commercial program. Furthermore, the sensitivity analysis outcome shows the embedded depth ratio is the most critical parameter, followed by the anisotropic strength ratio, overburden factor, load inclination, and adhesion factor. Additionally, the shear velocity field contours show that when the depth ratio and the load inclination increase, the dissipation of shear changes. Design data visualizations, tables, graph contours, and empirical equations are created and can be utilized to aid in the development of practical designs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.50
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信