污水施肥短轮作林地系统在选定地区的应用潜力(印度北方邦阿里加尔)

IF 4.6 Q2 GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY
Recycling Pub Date : 2023-09-29 DOI:10.3390/recycling8050075
Mirko Hänel, Ganbaatar Khurelbaatar, Emil Jespersen, Aryan Upadhyay, Andrés Acosta, Nadeem Khalil, Hans Brix, Carlos A. Arias
{"title":"污水施肥短轮作林地系统在选定地区的应用潜力(印度北方邦阿里加尔)","authors":"Mirko Hänel, Ganbaatar Khurelbaatar, Emil Jespersen, Aryan Upadhyay, Andrés Acosta, Nadeem Khalil, Hans Brix, Carlos A. Arias","doi":"10.3390/recycling8050075","DOIUrl":null,"url":null,"abstract":"In many Indian regions, increased wastewater is both a threat to public health and the environment, but it also presents an opportunity as a source of water and nutrients. With less than one-third of India’s wastewater treated and an alarming water scarcity situation, efficient wastewater treatment and reuse schemes are needed to face impending water and fertiliser shortages. This study explores the application potential of wastewater fertigated Short Rotation Coppice systems (wfSRC) as a cost-efficient and promising solution for treating and reusing wastewater in a specific region (400 km2, 184 settlements) of Aligarh (UP), India. Based on real data from a local wfSRC pilot site using bamboo, willow, and poplar, we analysed the system’s treatment performance, nutrient recovery, carbon sequestration potential, land requirements, biomass production potential, and cost–benefit, under various scenarios. The results show that the pilot wfSRC system is efficiently treating 250 m3/day of domestic wastewater on 6864 m2 of land, and serving 2500 people. The land requirements for wfSRC systems vary depending on local conditions (e.g., climate, soil type, wastewater composition) and user demands (e.g., water reuse efficiency, type, and amount of biomass). The calculated areas ranged from 2.75 to 25.7 m2/PE, which equates to a required land area in the whole study region of between 108 and 1006 ha in 2036. This would produce up to 100 DM t/ha/year of valuable biomass. Early local stakeholder involvement and the monitoring of pollutants are recommended as priorities during the planning process for the large-scale implementation of wfSRC systems in India.","PeriodicalId":36729,"journal":{"name":"Recycling","volume":"42 1","pages":"0"},"PeriodicalIF":4.6000,"publicationDate":"2023-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Application Potential of Wastewater Fertigated Short Rotation Coppice Systems in a Selected Region (Aligarh, UP, India)\",\"authors\":\"Mirko Hänel, Ganbaatar Khurelbaatar, Emil Jespersen, Aryan Upadhyay, Andrés Acosta, Nadeem Khalil, Hans Brix, Carlos A. Arias\",\"doi\":\"10.3390/recycling8050075\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In many Indian regions, increased wastewater is both a threat to public health and the environment, but it also presents an opportunity as a source of water and nutrients. With less than one-third of India’s wastewater treated and an alarming water scarcity situation, efficient wastewater treatment and reuse schemes are needed to face impending water and fertiliser shortages. This study explores the application potential of wastewater fertigated Short Rotation Coppice systems (wfSRC) as a cost-efficient and promising solution for treating and reusing wastewater in a specific region (400 km2, 184 settlements) of Aligarh (UP), India. Based on real data from a local wfSRC pilot site using bamboo, willow, and poplar, we analysed the system’s treatment performance, nutrient recovery, carbon sequestration potential, land requirements, biomass production potential, and cost–benefit, under various scenarios. The results show that the pilot wfSRC system is efficiently treating 250 m3/day of domestic wastewater on 6864 m2 of land, and serving 2500 people. The land requirements for wfSRC systems vary depending on local conditions (e.g., climate, soil type, wastewater composition) and user demands (e.g., water reuse efficiency, type, and amount of biomass). The calculated areas ranged from 2.75 to 25.7 m2/PE, which equates to a required land area in the whole study region of between 108 and 1006 ha in 2036. This would produce up to 100 DM t/ha/year of valuable biomass. Early local stakeholder involvement and the monitoring of pollutants are recommended as priorities during the planning process for the large-scale implementation of wfSRC systems in India.\",\"PeriodicalId\":36729,\"journal\":{\"name\":\"Recycling\",\"volume\":\"42 1\",\"pages\":\"0\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2023-09-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Recycling\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/recycling8050075\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Recycling","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/recycling8050075","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

在印度的许多地区,废水的增加既是对公共健康和环境的威胁,但它也提供了作为水和养分来源的机会。印度只有不到三分之一的废水得到了处理,而且水资源短缺的情况令人担忧,因此需要有效的废水处理和再利用方案来应对即将到来的水和肥料短缺。本研究探讨了污水施肥短轮作Coppice系统(wfSRC)在印度Aligarh (UP)特定地区(400平方公里,184个定居点)作为处理和再利用废水的一种具有成本效益和前景的解决方案的应用潜力。基于当地wfSRC试验点的真实数据,我们分析了该系统在不同情景下的处理性能、养分恢复、碳固存潜力、土地需求、生物质生产潜力和成本效益。试验结果表明,wfSRC系统在6864 m2的土地上有效处理生活污水250 m3/d,服务2500人。wfSRC系统的土地需求因当地条件(如气候、土壤类型、废水成分)和用户需求(如水再利用效率、生物质的类型和数量)而异。计算面积为2.75 ~ 25.7 m2/PE,相当于2036年整个研究区所需土地面积为108 ~ 1006 ha。这将产生高达100毫马克/公顷/年的宝贵生物质。在印度大规模实施wfSRC系统的规划过程中,建议将当地利益相关者的早期参与和污染物监测作为优先事项。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Application Potential of Wastewater Fertigated Short Rotation Coppice Systems in a Selected Region (Aligarh, UP, India)
In many Indian regions, increased wastewater is both a threat to public health and the environment, but it also presents an opportunity as a source of water and nutrients. With less than one-third of India’s wastewater treated and an alarming water scarcity situation, efficient wastewater treatment and reuse schemes are needed to face impending water and fertiliser shortages. This study explores the application potential of wastewater fertigated Short Rotation Coppice systems (wfSRC) as a cost-efficient and promising solution for treating and reusing wastewater in a specific region (400 km2, 184 settlements) of Aligarh (UP), India. Based on real data from a local wfSRC pilot site using bamboo, willow, and poplar, we analysed the system’s treatment performance, nutrient recovery, carbon sequestration potential, land requirements, biomass production potential, and cost–benefit, under various scenarios. The results show that the pilot wfSRC system is efficiently treating 250 m3/day of domestic wastewater on 6864 m2 of land, and serving 2500 people. The land requirements for wfSRC systems vary depending on local conditions (e.g., climate, soil type, wastewater composition) and user demands (e.g., water reuse efficiency, type, and amount of biomass). The calculated areas ranged from 2.75 to 25.7 m2/PE, which equates to a required land area in the whole study region of between 108 and 1006 ha in 2036. This would produce up to 100 DM t/ha/year of valuable biomass. Early local stakeholder involvement and the monitoring of pollutants are recommended as priorities during the planning process for the large-scale implementation of wfSRC systems in India.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Recycling
Recycling Environmental Science-Management, Monitoring, Policy and Law
CiteScore
6.80
自引率
7.00%
发文量
84
审稿时长
11 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信