{"title":"拓展神经生理学监测的边界","authors":"Bo Hou, Xiaogang Liu","doi":"10.1002/bmm2.12054","DOIUrl":null,"url":null,"abstract":"<p>The most prevalent among nervous system tumors significantly jeopardize patient health. For nerve integrity preservation after tumor removal, continuous intraoperative neurophysiological monitoring (CINM) is indispensable during microsurgery. The paper highlights the articles about the development of a system that employs soft and stretchable organic electronic materials for CINM. This innovative system harnesses soft and stretchable organic electronic materials and deploys conductive polymer electrodes with low impedance and modulus. These electrodes facilitate uninterrupted near-field action potential recording during surgery, resulting in enhanced signal-to-noise ratios and reduced invasiveness. Additionally, the system's multiplexing capabilities enable precise nerve localization, even in the absence of anatomical landmarks.</p>","PeriodicalId":100191,"journal":{"name":"BMEMat","volume":"1 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/bmm2.12054","citationCount":"0","resultStr":"{\"title\":\"Stretching boundaries in neurophysiological monitoring\",\"authors\":\"Bo Hou, Xiaogang Liu\",\"doi\":\"10.1002/bmm2.12054\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The most prevalent among nervous system tumors significantly jeopardize patient health. For nerve integrity preservation after tumor removal, continuous intraoperative neurophysiological monitoring (CINM) is indispensable during microsurgery. The paper highlights the articles about the development of a system that employs soft and stretchable organic electronic materials for CINM. This innovative system harnesses soft and stretchable organic electronic materials and deploys conductive polymer electrodes with low impedance and modulus. These electrodes facilitate uninterrupted near-field action potential recording during surgery, resulting in enhanced signal-to-noise ratios and reduced invasiveness. Additionally, the system's multiplexing capabilities enable precise nerve localization, even in the absence of anatomical landmarks.</p>\",\"PeriodicalId\":100191,\"journal\":{\"name\":\"BMEMat\",\"volume\":\"1 4\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-09-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/bmm2.12054\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BMEMat\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/bmm2.12054\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMEMat","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/bmm2.12054","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Stretching boundaries in neurophysiological monitoring
The most prevalent among nervous system tumors significantly jeopardize patient health. For nerve integrity preservation after tumor removal, continuous intraoperative neurophysiological monitoring (CINM) is indispensable during microsurgery. The paper highlights the articles about the development of a system that employs soft and stretchable organic electronic materials for CINM. This innovative system harnesses soft and stretchable organic electronic materials and deploys conductive polymer electrodes with low impedance and modulus. These electrodes facilitate uninterrupted near-field action potential recording during surgery, resulting in enhanced signal-to-noise ratios and reduced invasiveness. Additionally, the system's multiplexing capabilities enable precise nerve localization, even in the absence of anatomical landmarks.