不同条件下制备的可逆性固体氧化物电池燃料电极弛豫时间分布

Yohei Nagatomo, Yuya Tachikawa, Stephen Matthew Lyth, Junko Matsuda, Kazunari Sasaki
{"title":"不同条件下制备的可逆性固体氧化物电池燃料电极弛豫时间分布","authors":"Yohei Nagatomo, Yuya Tachikawa, Stephen Matthew Lyth, Junko Matsuda, Kazunari Sasaki","doi":"10.1149/11205.0121ecst","DOIUrl":null,"url":null,"abstract":"Reversible solid oxide cells (r-SOCs) are electrochemical energy devices that can reversibly switch between power generation by solid oxide fuel cells (SOFCs), and hydrogen production by solid oxide electrolysis cells (SOECs) the reverse operation of SOFCs. For the development of high-performance and durable r-SOCs, it is essential to understand not only the I-V characteristics but also the electrode reaction processes systematically. Here in this study, Ni-GDC cermet fuel electrodes, a composite of Ni and mixed-conducting Gd-doped ceria (GDC), were prepared at different sintering temperatures and electrode thicknesses. Electrochemical impedance measurements and distribution of relaxation times (DRT) analysis were performed in both SOFC and SOEC modes to investigate the influence of fabrication conditions on the fuel electrode reaction processes.","PeriodicalId":11473,"journal":{"name":"ECS Transactions","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Distribution of Relaxation Times of Fuel Electrodes for Reversible Solid Oxide Cells Fabricated Under Various Conditions\",\"authors\":\"Yohei Nagatomo, Yuya Tachikawa, Stephen Matthew Lyth, Junko Matsuda, Kazunari Sasaki\",\"doi\":\"10.1149/11205.0121ecst\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Reversible solid oxide cells (r-SOCs) are electrochemical energy devices that can reversibly switch between power generation by solid oxide fuel cells (SOFCs), and hydrogen production by solid oxide electrolysis cells (SOECs) the reverse operation of SOFCs. For the development of high-performance and durable r-SOCs, it is essential to understand not only the I-V characteristics but also the electrode reaction processes systematically. Here in this study, Ni-GDC cermet fuel electrodes, a composite of Ni and mixed-conducting Gd-doped ceria (GDC), were prepared at different sintering temperatures and electrode thicknesses. Electrochemical impedance measurements and distribution of relaxation times (DRT) analysis were performed in both SOFC and SOEC modes to investigate the influence of fabrication conditions on the fuel electrode reaction processes.\",\"PeriodicalId\":11473,\"journal\":{\"name\":\"ECS Transactions\",\"volume\":\"41 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-09-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ECS Transactions\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1149/11205.0121ecst\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ECS Transactions","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1149/11205.0121ecst","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

可逆固体氧化物电池(r- soc)是一种电化学能源装置,它可以在固体氧化物燃料电池(sofc)的发电和固体氧化物电解电池(soec)的制氢之间进行可逆切换。为了开发高性能和耐用的r- soc,不仅要了解I-V特性,还要系统地了解电极反应过程。本研究在不同的烧结温度和电极厚度下制备了Ni-GDC金属陶瓷燃料电极,即Ni和混合导电的gd掺杂铈(GDC)的复合材料。在SOFC和SOEC两种模式下进行了电化学阻抗测量和弛豫时间分布(DRT)分析,以研究制造条件对燃料电极反应过程的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Distribution of Relaxation Times of Fuel Electrodes for Reversible Solid Oxide Cells Fabricated Under Various Conditions
Reversible solid oxide cells (r-SOCs) are electrochemical energy devices that can reversibly switch between power generation by solid oxide fuel cells (SOFCs), and hydrogen production by solid oxide electrolysis cells (SOECs) the reverse operation of SOFCs. For the development of high-performance and durable r-SOCs, it is essential to understand not only the I-V characteristics but also the electrode reaction processes systematically. Here in this study, Ni-GDC cermet fuel electrodes, a composite of Ni and mixed-conducting Gd-doped ceria (GDC), were prepared at different sintering temperatures and electrode thicknesses. Electrochemical impedance measurements and distribution of relaxation times (DRT) analysis were performed in both SOFC and SOEC modes to investigate the influence of fabrication conditions on the fuel electrode reaction processes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信