利用定制的三层晶圆键合工艺实现MEMS蒸汽电池的高效Xe填充

Ali Roshanghias, Jaroslaw Kaczynski, Augusto Rodrigues, Martina Hübner, Markus Zauner, Giovanna Grosso, Nikolai Andrianov, Muhammad Khan, Thomas Grömer, Tino Fuchs, Alfred Binder
{"title":"利用定制的三层晶圆键合工艺实现MEMS蒸汽电池的高效Xe填充","authors":"Ali Roshanghias, Jaroslaw Kaczynski, Augusto Rodrigues, Martina Hübner, Markus Zauner, Giovanna Grosso, Nikolai Andrianov, Muhammad Khan, Thomas Grömer, Tino Fuchs, Alfred Binder","doi":"10.1149/11203.0221ecst","DOIUrl":null,"url":null,"abstract":"Nuclear-magnetic-resonance (NMR) gyroscopes based on MEMS vapor cell technology are currently being investigated worldwide and show superior advantages over current MEMS gyroscopes. However, there are still challenges in the upscaling and further deployment of NMR gyroscopes, due to the extremely high cost of the required gases (i.e., 129Xe, 131Xe), size, and high power consumption. To tackle these bottlenecks, in this study, a miniaturized, chip-scale, and low-cost NMR gyroscope has been conceptualized and fabricated. Here, a cost-effective and scalable filling of MEMS vapor cells with Xe gas was developed via an innovative microfabrication and wafer stacking process flow. By utilizing ultra-thin glass wafers, Taiko-processed silicon wafers, and an external gas flow system integrated into the wafer bonder, a sequential anodic bonding technique is executed to create a hermetically sealed Xe gas-filled chamber at minimal Xe consumption during the filling process.","PeriodicalId":11473,"journal":{"name":"ECS Transactions","volume":"69 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Efficient Xe Filling of MEMS Vapor Cells Empowered by Customized Triple Stack Wafer Bond Processing\",\"authors\":\"Ali Roshanghias, Jaroslaw Kaczynski, Augusto Rodrigues, Martina Hübner, Markus Zauner, Giovanna Grosso, Nikolai Andrianov, Muhammad Khan, Thomas Grömer, Tino Fuchs, Alfred Binder\",\"doi\":\"10.1149/11203.0221ecst\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Nuclear-magnetic-resonance (NMR) gyroscopes based on MEMS vapor cell technology are currently being investigated worldwide and show superior advantages over current MEMS gyroscopes. However, there are still challenges in the upscaling and further deployment of NMR gyroscopes, due to the extremely high cost of the required gases (i.e., 129Xe, 131Xe), size, and high power consumption. To tackle these bottlenecks, in this study, a miniaturized, chip-scale, and low-cost NMR gyroscope has been conceptualized and fabricated. Here, a cost-effective and scalable filling of MEMS vapor cells with Xe gas was developed via an innovative microfabrication and wafer stacking process flow. By utilizing ultra-thin glass wafers, Taiko-processed silicon wafers, and an external gas flow system integrated into the wafer bonder, a sequential anodic bonding technique is executed to create a hermetically sealed Xe gas-filled chamber at minimal Xe consumption during the filling process.\",\"PeriodicalId\":11473,\"journal\":{\"name\":\"ECS Transactions\",\"volume\":\"69 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-09-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ECS Transactions\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1149/11203.0221ecst\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ECS Transactions","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1149/11203.0221ecst","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

基于MEMS蒸汽池技术的核磁共振陀螺仪在世界范围内得到了广泛的研究,并显示出比现有MEMS陀螺仪更优越的优势。然而,由于所需气体(即129Xe, 131Xe)的成本极高,尺寸和功耗高,核磁共振陀螺仪的升级和进一步部署仍然存在挑战。为了解决这些瓶颈,在本研究中,一种小型化、芯片级、低成本的核磁共振陀螺仪已经被概念化并制造出来。在这里,通过创新的微加工和晶圆堆叠工艺流程,开发了一种具有成本效益和可扩展的Xe气体填充MEMS蒸汽电池。通过利用超薄玻璃晶圆,taiko加工的硅片,以及集成在晶圆键合机中的外部气体流动系统,执行顺序阳极键合技术,在填充过程中以最小的Xe消耗创建一个密封的Xe气体填充室。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Efficient Xe Filling of MEMS Vapor Cells Empowered by Customized Triple Stack Wafer Bond Processing
Nuclear-magnetic-resonance (NMR) gyroscopes based on MEMS vapor cell technology are currently being investigated worldwide and show superior advantages over current MEMS gyroscopes. However, there are still challenges in the upscaling and further deployment of NMR gyroscopes, due to the extremely high cost of the required gases (i.e., 129Xe, 131Xe), size, and high power consumption. To tackle these bottlenecks, in this study, a miniaturized, chip-scale, and low-cost NMR gyroscope has been conceptualized and fabricated. Here, a cost-effective and scalable filling of MEMS vapor cells with Xe gas was developed via an innovative microfabrication and wafer stacking process flow. By utilizing ultra-thin glass wafers, Taiko-processed silicon wafers, and an external gas flow system integrated into the wafer bonder, a sequential anodic bonding technique is executed to create a hermetically sealed Xe gas-filled chamber at minimal Xe consumption during the filling process.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信