阳极键形成过程及其潜在应用的研究

Roy Knechtel, Micaela Wenig, Martin Seyring, Dominik Kley
{"title":"阳极键形成过程及其潜在应用的研究","authors":"Roy Knechtel, Micaela Wenig, Martin Seyring, Dominik Kley","doi":"10.1149/11203.0207ecst","DOIUrl":null,"url":null,"abstract":"Anodic bonding of glass to silicon wafers is an essential step in microsystems manufacturing, combining reliable process setup with robust process control and providing very strong and hermetic wafer bonds. It is general accepted that the bond formation is based on anodic oxidation processes, but it is still under debate where the oxygen originates from and how far the oxidation can be driven. The oxidation mechanism during anodic bonding has been studied using sequential and one-step bonding procedures. It can be concluded that the oxygen for the oxidation originates from the glass. It is therefore possible to completely oxidise sputtered aluminium between two glass wafers during bonding, resulting in a nearly optically transparent bond of both wafers. By understanding the oxidation processes, it is possible to predict which surface layers will bond well (silicon, silicon dioxide, aluminium) and which will be hardly or impossible to bond (silicon nitride, gold). These predictions have been tested and confirmed by experimental results.","PeriodicalId":11473,"journal":{"name":"ECS Transactions","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigation of Anodic Bond Formation Process and Potential Use of the Results\",\"authors\":\"Roy Knechtel, Micaela Wenig, Martin Seyring, Dominik Kley\",\"doi\":\"10.1149/11203.0207ecst\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Anodic bonding of glass to silicon wafers is an essential step in microsystems manufacturing, combining reliable process setup with robust process control and providing very strong and hermetic wafer bonds. It is general accepted that the bond formation is based on anodic oxidation processes, but it is still under debate where the oxygen originates from and how far the oxidation can be driven. The oxidation mechanism during anodic bonding has been studied using sequential and one-step bonding procedures. It can be concluded that the oxygen for the oxidation originates from the glass. It is therefore possible to completely oxidise sputtered aluminium between two glass wafers during bonding, resulting in a nearly optically transparent bond of both wafers. By understanding the oxidation processes, it is possible to predict which surface layers will bond well (silicon, silicon dioxide, aluminium) and which will be hardly or impossible to bond (silicon nitride, gold). These predictions have been tested and confirmed by experimental results.\",\"PeriodicalId\":11473,\"journal\":{\"name\":\"ECS Transactions\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-09-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ECS Transactions\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1149/11203.0207ecst\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ECS Transactions","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1149/11203.0207ecst","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

玻璃与硅片的阳极键合是微系统制造中必不可少的一步,它将可靠的工艺设置与强大的工艺控制相结合,并提供非常坚固和密封的晶圆键合。人们普遍认为键的形成是基于阳极氧化过程的,但氧的来源和氧化的程度仍在争论中。采用顺序键合和一步键合的方法研究了阳极键合过程中的氧化机理。可以得出结论,氧化所需的氧气来源于玻璃。因此,在键合过程中可以完全氧化两个玻璃晶圆之间的溅射铝,从而使两个晶圆之间的键合近乎光学透明。通过了解氧化过程,可以预测哪些表面层可以很好地结合(硅、二氧化硅、铝),哪些表面层很难或不可能结合(氮化硅、金)。这些预测已经得到了实验结果的检验和证实。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Investigation of Anodic Bond Formation Process and Potential Use of the Results
Anodic bonding of glass to silicon wafers is an essential step in microsystems manufacturing, combining reliable process setup with robust process control and providing very strong and hermetic wafer bonds. It is general accepted that the bond formation is based on anodic oxidation processes, but it is still under debate where the oxygen originates from and how far the oxidation can be driven. The oxidation mechanism during anodic bonding has been studied using sequential and one-step bonding procedures. It can be concluded that the oxygen for the oxidation originates from the glass. It is therefore possible to completely oxidise sputtered aluminium between two glass wafers during bonding, resulting in a nearly optically transparent bond of both wafers. By understanding the oxidation processes, it is possible to predict which surface layers will bond well (silicon, silicon dioxide, aluminium) and which will be hardly or impossible to bond (silicon nitride, gold). These predictions have been tested and confirmed by experimental results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信