多线性回归道路交通噪声模型数据集生成的优化

Q3 Social Sciences
Domenico Rossi, Aurora Mascolo, Claudio Guarnaccia
{"title":"多线性回归道路交通噪声模型数据集生成的优化","authors":"Domenico Rossi, Aurora Mascolo, Claudio Guarnaccia","doi":"10.37394/232015.2023.19.106","DOIUrl":null,"url":null,"abstract":"According to the European Environmental Agency, road traffic noise is one of the worst and most prevalent kinds of environmental pollutants, which causes health problems to a constantly increasing number of people in urban areas throughout Europe. It has been proved that prolonged exposure to sound levels exceeding 55 dBA is harmful and causes severe problems like sleep disturbances, tiredness, lack of concentration, high blood pressure and, in the worst case, sudden death. A precise and constant evaluation of sound level in inhabited areas is therefore desired (and in some cases compelled by laws), but collection of actual noise data is not easy and sometimes not possible. For this reason, Road Traffic Noise (RTN) models are very handy: one can (more or less precisely) estimate the noise emitted in a certain area having certain road traffic characteristics. The application of RTN models, anyway, also has problems. First of all, an RTN model has to be built and calibrated by using real collected noise data. Moreover, when trying to apply an RTN model on road traffic situations that are far away from the site of collection, the models generally fail. To overcome such problems, in this contribution, a road traffic dataset has been computed by randomly generating values of traffic variables like the number of vehicles per unit of time, their velocities, and their distance from the receiver. Then, by applying a multiregressive function on the dataset, the obtained coefficients have been used to calibrate and validate the presented model. The three steps (generation of the dataset, calibration of the model, and validation on a real dataset) are detailly investigated.","PeriodicalId":53713,"journal":{"name":"WSEAS Transactions on Environment and Development","volume":" 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimization of Dataset Generation for a Multilinear Regressive Road Traffic Noise Model\",\"authors\":\"Domenico Rossi, Aurora Mascolo, Claudio Guarnaccia\",\"doi\":\"10.37394/232015.2023.19.106\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"According to the European Environmental Agency, road traffic noise is one of the worst and most prevalent kinds of environmental pollutants, which causes health problems to a constantly increasing number of people in urban areas throughout Europe. It has been proved that prolonged exposure to sound levels exceeding 55 dBA is harmful and causes severe problems like sleep disturbances, tiredness, lack of concentration, high blood pressure and, in the worst case, sudden death. A precise and constant evaluation of sound level in inhabited areas is therefore desired (and in some cases compelled by laws), but collection of actual noise data is not easy and sometimes not possible. For this reason, Road Traffic Noise (RTN) models are very handy: one can (more or less precisely) estimate the noise emitted in a certain area having certain road traffic characteristics. The application of RTN models, anyway, also has problems. First of all, an RTN model has to be built and calibrated by using real collected noise data. Moreover, when trying to apply an RTN model on road traffic situations that are far away from the site of collection, the models generally fail. To overcome such problems, in this contribution, a road traffic dataset has been computed by randomly generating values of traffic variables like the number of vehicles per unit of time, their velocities, and their distance from the receiver. Then, by applying a multiregressive function on the dataset, the obtained coefficients have been used to calibrate and validate the presented model. The three steps (generation of the dataset, calibration of the model, and validation on a real dataset) are detailly investigated.\",\"PeriodicalId\":53713,\"journal\":{\"name\":\"WSEAS Transactions on Environment and Development\",\"volume\":\" 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-11-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"WSEAS Transactions on Environment and Development\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.37394/232015.2023.19.106\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Social Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"WSEAS Transactions on Environment and Development","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37394/232015.2023.19.106","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Social Sciences","Score":null,"Total":0}
引用次数: 0

摘要

据欧洲环境署称,道路交通噪音是最严重和最普遍的环境污染物之一,它给整个欧洲城市地区越来越多的人带来健康问题。事实证明,长时间暴露在超过55dba的声音水平下是有害的,会导致严重的问题,如睡眠障碍、疲劳、注意力不集中、高血压,最坏的情况下还会导致猝死。因此,需要对有人居住地区的声级进行精确和持续的评估(在某些情况下是法律强制要求的),但是收集实际的噪声数据并不容易,有时甚至是不可能的。因此,道路交通噪声(RTN)模型非常方便:人们可以(或多或少精确地)估计在具有特定道路交通特征的特定区域发出的噪声。无论如何,RTN模型的应用也存在问题。首先,必须利用实际采集的噪声数据建立RTN模型并进行校准。此外,当试图将RTN模型应用于距离采集地点较远的道路交通情况时,模型通常会失败。为了克服这些问题,在本贡献中,通过随机生成交通变量的值来计算道路交通数据集,如单位时间内的车辆数量、速度以及与接收器的距离。然后,通过对数据集应用多元回归函数,使用获得的系数来校准和验证所提出的模型。详细研究了三个步骤(数据集的生成、模型的校准和在真实数据集上的验证)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimization of Dataset Generation for a Multilinear Regressive Road Traffic Noise Model
According to the European Environmental Agency, road traffic noise is one of the worst and most prevalent kinds of environmental pollutants, which causes health problems to a constantly increasing number of people in urban areas throughout Europe. It has been proved that prolonged exposure to sound levels exceeding 55 dBA is harmful and causes severe problems like sleep disturbances, tiredness, lack of concentration, high blood pressure and, in the worst case, sudden death. A precise and constant evaluation of sound level in inhabited areas is therefore desired (and in some cases compelled by laws), but collection of actual noise data is not easy and sometimes not possible. For this reason, Road Traffic Noise (RTN) models are very handy: one can (more or less precisely) estimate the noise emitted in a certain area having certain road traffic characteristics. The application of RTN models, anyway, also has problems. First of all, an RTN model has to be built and calibrated by using real collected noise data. Moreover, when trying to apply an RTN model on road traffic situations that are far away from the site of collection, the models generally fail. To overcome such problems, in this contribution, a road traffic dataset has been computed by randomly generating values of traffic variables like the number of vehicles per unit of time, their velocities, and their distance from the receiver. Then, by applying a multiregressive function on the dataset, the obtained coefficients have been used to calibrate and validate the presented model. The three steps (generation of the dataset, calibration of the model, and validation on a real dataset) are detailly investigated.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
118
期刊介绍: WSEAS Transactions on Environment and Development publishes original research papers relating to the studying of environmental sciences. We aim to bring important work to a wide international audience and therefore only publish papers of exceptional scientific value that advance our understanding of these particular areas. The research presented must transcend the limits of case studies, while both experimental and theoretical studies are accepted. It is a multi-disciplinary journal and therefore its content mirrors the diverse interests and approaches of scholars involved with sustainable development, climate change, natural hazards, renewable energy systems and related areas. We also welcome scholarly contributions from officials with government agencies, international agencies, and non-governmental organizations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信