{"title":"冲击速度和角度对高剪低压磨削力、力比及变形行为的影响","authors":"Guoyu Zhang, Yebing Tian, Sohini Chowdhury, Jinling Wang, Bing Liu, Jinguo Han, Zenghua Fan","doi":"10.2174/0118764029255495231020063843","DOIUrl":null,"url":null,"abstract":"Background: The normal grinding force is generally larger than the tangential one during the conventional grinding processes. Consequently, several machining issues are caused, such as low material removal rate, high grinding temperature, and poor surface integrity. To overcome the constraints associated with the conventional grinding methods, a novel “high-shear and low-pressure” flexible grinding wheel is utilized. A thorough investigation on the influence of machining parameters on the high-shear and low-pressure grinding performance from a microscopic perspective is focused. Objective: The effect of the impacting angle and speed on the grinding force, grinding force ratio, and fiber deformation displacement is explored at the microscopic level. Method: An impact model was established using ABAQUS software to explore and analyze the interaction results of micro convex peaks with the abrasive layer under different processing conditions. Result: It was found that the normal grinding force F_n increased with both impact angle and speed. Similarly, the tangential grinding force F_t is enhanced with increasing speed. However, its magnitude is reduced with impact angle. The grinding force ratio is primarily affected by the impact angle, which displays a declining trend. The maximum fabric deformation displacement reaches 72.4 nm at an angle of 60° and at a speed of 9 m/s. Conclusion: The maximum fabric deformation displacement reaches 72.4 nm at an angle of 60° and a velocity of 9 m/s.","PeriodicalId":18543,"journal":{"name":"Micro and Nanosystems","volume":" 11","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effects of the Impacting Velocity and Angle on the Grinding Force, Force Ratio and Deformation Behavior During High-shear and Low-pressure Grinding\",\"authors\":\"Guoyu Zhang, Yebing Tian, Sohini Chowdhury, Jinling Wang, Bing Liu, Jinguo Han, Zenghua Fan\",\"doi\":\"10.2174/0118764029255495231020063843\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Background: The normal grinding force is generally larger than the tangential one during the conventional grinding processes. Consequently, several machining issues are caused, such as low material removal rate, high grinding temperature, and poor surface integrity. To overcome the constraints associated with the conventional grinding methods, a novel “high-shear and low-pressure” flexible grinding wheel is utilized. A thorough investigation on the influence of machining parameters on the high-shear and low-pressure grinding performance from a microscopic perspective is focused. Objective: The effect of the impacting angle and speed on the grinding force, grinding force ratio, and fiber deformation displacement is explored at the microscopic level. Method: An impact model was established using ABAQUS software to explore and analyze the interaction results of micro convex peaks with the abrasive layer under different processing conditions. Result: It was found that the normal grinding force F_n increased with both impact angle and speed. Similarly, the tangential grinding force F_t is enhanced with increasing speed. However, its magnitude is reduced with impact angle. The grinding force ratio is primarily affected by the impact angle, which displays a declining trend. The maximum fabric deformation displacement reaches 72.4 nm at an angle of 60° and at a speed of 9 m/s. Conclusion: The maximum fabric deformation displacement reaches 72.4 nm at an angle of 60° and a velocity of 9 m/s.\",\"PeriodicalId\":18543,\"journal\":{\"name\":\"Micro and Nanosystems\",\"volume\":\" 11\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-11-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Micro and Nanosystems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2174/0118764029255495231020063843\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Micro and Nanosystems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/0118764029255495231020063843","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
Effects of the Impacting Velocity and Angle on the Grinding Force, Force Ratio and Deformation Behavior During High-shear and Low-pressure Grinding
Background: The normal grinding force is generally larger than the tangential one during the conventional grinding processes. Consequently, several machining issues are caused, such as low material removal rate, high grinding temperature, and poor surface integrity. To overcome the constraints associated with the conventional grinding methods, a novel “high-shear and low-pressure” flexible grinding wheel is utilized. A thorough investigation on the influence of machining parameters on the high-shear and low-pressure grinding performance from a microscopic perspective is focused. Objective: The effect of the impacting angle and speed on the grinding force, grinding force ratio, and fiber deformation displacement is explored at the microscopic level. Method: An impact model was established using ABAQUS software to explore and analyze the interaction results of micro convex peaks with the abrasive layer under different processing conditions. Result: It was found that the normal grinding force F_n increased with both impact angle and speed. Similarly, the tangential grinding force F_t is enhanced with increasing speed. However, its magnitude is reduced with impact angle. The grinding force ratio is primarily affected by the impact angle, which displays a declining trend. The maximum fabric deformation displacement reaches 72.4 nm at an angle of 60° and at a speed of 9 m/s. Conclusion: The maximum fabric deformation displacement reaches 72.4 nm at an angle of 60° and a velocity of 9 m/s.