Jackson Winter , Shraddha Shirguppe , Pablo Perez-Pinera
{"title":"开发下一代基因组编辑器的蛋白质工程技术","authors":"Jackson Winter , Shraddha Shirguppe , Pablo Perez-Pinera","doi":"10.1016/j.cobme.2023.100514","DOIUrl":null,"url":null,"abstract":"<div><p><span>Base editors and prime editors have emerged as promising tools for the modeling and treatment of genetic diseases due to their ability to introduce targeted modifications in the </span>genomic DNA<span> of living cells. Several engineering approaches have been applied to improve their performance, ranging from simple protein design<span> approaches to complex directed evolution schemes that can probe a vast landscape of mutational variants with minimal user intervention. These extensive efforts have led to new generations of editors with enhanced properties such as increased editing activity, tailored editing windows, increased targetability, smaller construct size for viral delivery, and decreased off-target effects. In this manuscript we review protein engineering technologies that have been recently utilized to create an ever-evolving landscape of high-performance gene editing tools specifically designed for genetic targets of interest and that have redefined what is possible in the field of precision medicine.</span></span></p></div>","PeriodicalId":36748,"journal":{"name":"Current Opinion in Biomedical Engineering","volume":"28 ","pages":"Article 100514"},"PeriodicalIF":4.7000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Protein engineering technologies for development of next-generation genome editors\",\"authors\":\"Jackson Winter , Shraddha Shirguppe , Pablo Perez-Pinera\",\"doi\":\"10.1016/j.cobme.2023.100514\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span>Base editors and prime editors have emerged as promising tools for the modeling and treatment of genetic diseases due to their ability to introduce targeted modifications in the </span>genomic DNA<span> of living cells. Several engineering approaches have been applied to improve their performance, ranging from simple protein design<span> approaches to complex directed evolution schemes that can probe a vast landscape of mutational variants with minimal user intervention. These extensive efforts have led to new generations of editors with enhanced properties such as increased editing activity, tailored editing windows, increased targetability, smaller construct size for viral delivery, and decreased off-target effects. In this manuscript we review protein engineering technologies that have been recently utilized to create an ever-evolving landscape of high-performance gene editing tools specifically designed for genetic targets of interest and that have redefined what is possible in the field of precision medicine.</span></span></p></div>\",\"PeriodicalId\":36748,\"journal\":{\"name\":\"Current Opinion in Biomedical Engineering\",\"volume\":\"28 \",\"pages\":\"Article 100514\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2023-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Opinion in Biomedical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2468451123000703\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468451123000703","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Protein engineering technologies for development of next-generation genome editors
Base editors and prime editors have emerged as promising tools for the modeling and treatment of genetic diseases due to their ability to introduce targeted modifications in the genomic DNA of living cells. Several engineering approaches have been applied to improve their performance, ranging from simple protein design approaches to complex directed evolution schemes that can probe a vast landscape of mutational variants with minimal user intervention. These extensive efforts have led to new generations of editors with enhanced properties such as increased editing activity, tailored editing windows, increased targetability, smaller construct size for viral delivery, and decreased off-target effects. In this manuscript we review protein engineering technologies that have been recently utilized to create an ever-evolving landscape of high-performance gene editing tools specifically designed for genetic targets of interest and that have redefined what is possible in the field of precision medicine.