开发下一代基因组编辑器的蛋白质工程技术

IF 4.7 3区 工程技术 Q2 ENGINEERING, BIOMEDICAL
Jackson Winter , Shraddha Shirguppe , Pablo Perez-Pinera
{"title":"开发下一代基因组编辑器的蛋白质工程技术","authors":"Jackson Winter ,&nbsp;Shraddha Shirguppe ,&nbsp;Pablo Perez-Pinera","doi":"10.1016/j.cobme.2023.100514","DOIUrl":null,"url":null,"abstract":"<div><p><span>Base editors and prime editors have emerged as promising tools for the modeling and treatment of genetic diseases due to their ability to introduce targeted modifications in the </span>genomic DNA<span> of living cells. Several engineering approaches have been applied to improve their performance, ranging from simple protein design<span> approaches to complex directed evolution schemes that can probe a vast landscape of mutational variants with minimal user intervention. These extensive efforts have led to new generations of editors with enhanced properties such as increased editing activity, tailored editing windows, increased targetability, smaller construct size for viral delivery, and decreased off-target effects. In this manuscript we review protein engineering technologies that have been recently utilized to create an ever-evolving landscape of high-performance gene editing tools specifically designed for genetic targets of interest and that have redefined what is possible in the field of precision medicine.</span></span></p></div>","PeriodicalId":36748,"journal":{"name":"Current Opinion in Biomedical Engineering","volume":"28 ","pages":"Article 100514"},"PeriodicalIF":4.7000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Protein engineering technologies for development of next-generation genome editors\",\"authors\":\"Jackson Winter ,&nbsp;Shraddha Shirguppe ,&nbsp;Pablo Perez-Pinera\",\"doi\":\"10.1016/j.cobme.2023.100514\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span>Base editors and prime editors have emerged as promising tools for the modeling and treatment of genetic diseases due to their ability to introduce targeted modifications in the </span>genomic DNA<span> of living cells. Several engineering approaches have been applied to improve their performance, ranging from simple protein design<span> approaches to complex directed evolution schemes that can probe a vast landscape of mutational variants with minimal user intervention. These extensive efforts have led to new generations of editors with enhanced properties such as increased editing activity, tailored editing windows, increased targetability, smaller construct size for viral delivery, and decreased off-target effects. In this manuscript we review protein engineering technologies that have been recently utilized to create an ever-evolving landscape of high-performance gene editing tools specifically designed for genetic targets of interest and that have redefined what is possible in the field of precision medicine.</span></span></p></div>\",\"PeriodicalId\":36748,\"journal\":{\"name\":\"Current Opinion in Biomedical Engineering\",\"volume\":\"28 \",\"pages\":\"Article 100514\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2023-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Opinion in Biomedical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2468451123000703\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468451123000703","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

碱基编辑器和引物编辑器由于能够在活细胞的基因组DNA中引入靶向修饰,已成为建模和治疗遗传疾病的有前途的工具。已经应用了几种工程方法来提高它们的性能,从简单的蛋白质设计方法到复杂的定向进化方案,这些方案可以在最小的用户干预下探测突变变异的广阔景观。这些广泛的努力导致新一代的编辑器具有增强的属性,如增加的编辑活动,定制的编辑窗口,增加的针对性,更小的病毒传递结构尺寸,减少脱靶效应。在这篇手稿中,我们回顾了蛋白质工程技术,这些技术最近被用来创建一个不断发展的高性能基因编辑工具,专门为感兴趣的基因靶标设计,并重新定义了精准医学领域的可能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Protein engineering technologies for development of next-generation genome editors

Base editors and prime editors have emerged as promising tools for the modeling and treatment of genetic diseases due to their ability to introduce targeted modifications in the genomic DNA of living cells. Several engineering approaches have been applied to improve their performance, ranging from simple protein design approaches to complex directed evolution schemes that can probe a vast landscape of mutational variants with minimal user intervention. These extensive efforts have led to new generations of editors with enhanced properties such as increased editing activity, tailored editing windows, increased targetability, smaller construct size for viral delivery, and decreased off-target effects. In this manuscript we review protein engineering technologies that have been recently utilized to create an ever-evolving landscape of high-performance gene editing tools specifically designed for genetic targets of interest and that have redefined what is possible in the field of precision medicine.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Current Opinion in Biomedical Engineering
Current Opinion in Biomedical Engineering Medicine-Medicine (miscellaneous)
CiteScore
8.60
自引率
2.60%
发文量
59
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信