Eungjun Yoon, Tae Yeul Kim, Hyungsuk Kim, Duck Cho
{"title":"evorpacept诱导的干扰及其在输血前检测中的应用","authors":"Eungjun Yoon, Tae Yeul Kim, Hyungsuk Kim, Duck Cho","doi":"10.1159/000534273","DOIUrl":null,"url":null,"abstract":"<b><i>Introduction:</i></b> Evorpacept is a CD47-blocking agent currently being developed for the treatment of various cancers. Interference by evorpacept in pretransfusion compatibility testing has been reported at limited plasma concentrations. Although various mitigation strategies have been proposed, none are practical. This in vitro study assessed evorpacept-induced interference at extended concentrations and investigated the capability of a novel mitigation agent, Evo-NR. <b><i>Methods:</i></b> Antibody screening tests were performed on evorpacept-spiked plasma with (anti-E and anti-Jk<sup>a</sup>) or without alloantibodies at evorpacept concentrations up to 2,000 μg/mL using manual gel cards and automated analyzers. Evorpacept-coated red blood cells (RBCs) (rr [ce/ce], Fy[a+b−], S−s+) were tested by direct antiglobulin testing (DAT) and antigen typing using anti-Fy<sup>b</sup> and anti-S reagents at indirect antiglobulin testing (IAT) phase. Evo-NR was used to resolve the interference in plasma and RBC samples. Flow cytometry was used to assess the mitigation effects. <b><i>Results:</i></b> Evorpacept-spiked plasma showed panreactive interference in antibody screening tests using manual gel cards (2+ to 3+) and automated analyzers (4+). A carryover effect was also observed in the automated analyzers. The use of a 3- to 6-fold molar excess of Evo-NR effectively resolved the interference in the plasma and enabled accurate alloantibody identification. Although the reduction in evorpacept binding to RBCs was identified via flow cytometry, Evo-NR was incapable of resolving the serologic interference observed in DAT and antigen typing at IAT phase. <b><i>Discussion:</i></b> Evorpacept showed constant panreactivity and a carryover effect at high concentrations. Evo-NR successfully resolved the interference in the plasma samples and could be considered a practical and efficient mitigation solution. Implementation of Evo-NR has the potential to support RBC transfusion for patients undergoing evorpacept treatment.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evorpacept-Induced Interference and Application of a Novel Mitigation Agent, Evo-NR, in Pretransfusion Testing\",\"authors\":\"Eungjun Yoon, Tae Yeul Kim, Hyungsuk Kim, Duck Cho\",\"doi\":\"10.1159/000534273\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<b><i>Introduction:</i></b> Evorpacept is a CD47-blocking agent currently being developed for the treatment of various cancers. Interference by evorpacept in pretransfusion compatibility testing has been reported at limited plasma concentrations. Although various mitigation strategies have been proposed, none are practical. This in vitro study assessed evorpacept-induced interference at extended concentrations and investigated the capability of a novel mitigation agent, Evo-NR. <b><i>Methods:</i></b> Antibody screening tests were performed on evorpacept-spiked plasma with (anti-E and anti-Jk<sup>a</sup>) or without alloantibodies at evorpacept concentrations up to 2,000 μg/mL using manual gel cards and automated analyzers. Evorpacept-coated red blood cells (RBCs) (rr [ce/ce], Fy[a+b−], S−s+) were tested by direct antiglobulin testing (DAT) and antigen typing using anti-Fy<sup>b</sup> and anti-S reagents at indirect antiglobulin testing (IAT) phase. Evo-NR was used to resolve the interference in plasma and RBC samples. Flow cytometry was used to assess the mitigation effects. <b><i>Results:</i></b> Evorpacept-spiked plasma showed panreactive interference in antibody screening tests using manual gel cards (2+ to 3+) and automated analyzers (4+). A carryover effect was also observed in the automated analyzers. The use of a 3- to 6-fold molar excess of Evo-NR effectively resolved the interference in the plasma and enabled accurate alloantibody identification. Although the reduction in evorpacept binding to RBCs was identified via flow cytometry, Evo-NR was incapable of resolving the serologic interference observed in DAT and antigen typing at IAT phase. <b><i>Discussion:</i></b> Evorpacept showed constant panreactivity and a carryover effect at high concentrations. Evo-NR successfully resolved the interference in the plasma samples and could be considered a practical and efficient mitigation solution. Implementation of Evo-NR has the potential to support RBC transfusion for patients undergoing evorpacept treatment.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-10-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1159/000534273\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1159/000534273","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Evorpacept-Induced Interference and Application of a Novel Mitigation Agent, Evo-NR, in Pretransfusion Testing
Introduction: Evorpacept is a CD47-blocking agent currently being developed for the treatment of various cancers. Interference by evorpacept in pretransfusion compatibility testing has been reported at limited plasma concentrations. Although various mitigation strategies have been proposed, none are practical. This in vitro study assessed evorpacept-induced interference at extended concentrations and investigated the capability of a novel mitigation agent, Evo-NR. Methods: Antibody screening tests were performed on evorpacept-spiked plasma with (anti-E and anti-Jka) or without alloantibodies at evorpacept concentrations up to 2,000 μg/mL using manual gel cards and automated analyzers. Evorpacept-coated red blood cells (RBCs) (rr [ce/ce], Fy[a+b−], S−s+) were tested by direct antiglobulin testing (DAT) and antigen typing using anti-Fyb and anti-S reagents at indirect antiglobulin testing (IAT) phase. Evo-NR was used to resolve the interference in plasma and RBC samples. Flow cytometry was used to assess the mitigation effects. Results: Evorpacept-spiked plasma showed panreactive interference in antibody screening tests using manual gel cards (2+ to 3+) and automated analyzers (4+). A carryover effect was also observed in the automated analyzers. The use of a 3- to 6-fold molar excess of Evo-NR effectively resolved the interference in the plasma and enabled accurate alloantibody identification. Although the reduction in evorpacept binding to RBCs was identified via flow cytometry, Evo-NR was incapable of resolving the serologic interference observed in DAT and antigen typing at IAT phase. Discussion: Evorpacept showed constant panreactivity and a carryover effect at high concentrations. Evo-NR successfully resolved the interference in the plasma samples and could be considered a practical and efficient mitigation solution. Implementation of Evo-NR has the potential to support RBC transfusion for patients undergoing evorpacept treatment.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.