Chenglong Huang, Erwu Liu, Rui Wang, Yan Liu, Hanfu Zhang, Yuanzhe Geng, Jie Wang, Shaoyi Han
{"title":"通过基于有向无环图的区块链实现个性化联合学习","authors":"Chenglong Huang, Erwu Liu, Rui Wang, Yan Liu, Hanfu Zhang, Yuanzhe Geng, Jie Wang, Shaoyi Han","doi":"10.1049/blc2.12054","DOIUrl":null,"url":null,"abstract":"<p>Common federated learning (FL) lacks consideration of clients' personalized requirements, which performs poorly for the scenario with data and resource heterogeneity. In order to overcome the challenge of heterogeneous characteristics, this letter proposes a novel decentralized personalized federated learning (PFL) architecture that first utilizes a directed acyclic graph (DAG) blockchain technology to achieve PFL efficiently, which is called PFLDAG. Simulation results demonstrate that PFLDAG approximately improves accuracy by 80% compared with the classic Google FedAvg algorithm, and by 10% compared with IFCA cluster PFL which considers personalized requirements. In addition, the approach also substantially improves the convergence speed.</p>","PeriodicalId":100650,"journal":{"name":"IET Blockchain","volume":"4 1","pages":"73-82"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/blc2.12054","citationCount":"0","resultStr":"{\"title\":\"Personalized federated learning via directed acyclic graph based blockchain\",\"authors\":\"Chenglong Huang, Erwu Liu, Rui Wang, Yan Liu, Hanfu Zhang, Yuanzhe Geng, Jie Wang, Shaoyi Han\",\"doi\":\"10.1049/blc2.12054\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Common federated learning (FL) lacks consideration of clients' personalized requirements, which performs poorly for the scenario with data and resource heterogeneity. In order to overcome the challenge of heterogeneous characteristics, this letter proposes a novel decentralized personalized federated learning (PFL) architecture that first utilizes a directed acyclic graph (DAG) blockchain technology to achieve PFL efficiently, which is called PFLDAG. Simulation results demonstrate that PFLDAG approximately improves accuracy by 80% compared with the classic Google FedAvg algorithm, and by 10% compared with IFCA cluster PFL which considers personalized requirements. In addition, the approach also substantially improves the convergence speed.</p>\",\"PeriodicalId\":100650,\"journal\":{\"name\":\"IET Blockchain\",\"volume\":\"4 1\",\"pages\":\"73-82\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1049/blc2.12054\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IET Blockchain\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/blc2.12054\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Blockchain","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/blc2.12054","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Personalized federated learning via directed acyclic graph based blockchain
Common federated learning (FL) lacks consideration of clients' personalized requirements, which performs poorly for the scenario with data and resource heterogeneity. In order to overcome the challenge of heterogeneous characteristics, this letter proposes a novel decentralized personalized federated learning (PFL) architecture that first utilizes a directed acyclic graph (DAG) blockchain technology to achieve PFL efficiently, which is called PFLDAG. Simulation results demonstrate that PFLDAG approximately improves accuracy by 80% compared with the classic Google FedAvg algorithm, and by 10% compared with IFCA cluster PFL which considers personalized requirements. In addition, the approach also substantially improves the convergence speed.