用四球摩擦计评估润滑油摩擦学性能的方法学方法

IF 3.1 3区 工程技术 Q2 ENGINEERING, MECHANICAL
Tareq M. A. Al-Quraan, Fadi Alfaqs, Jamil Haddad, Viktor Vojtov, Anton Voitov, Andrey Kravtsov, Oleksandr Miroshnyk, Andrii Kondratiev
{"title":"用四球摩擦计评估润滑油摩擦学性能的方法学方法","authors":"Tareq M. A. Al-Quraan, Fadi Alfaqs, Jamil Haddad, Viktor Vojtov, Anton Voitov, Andrey Kravtsov, Oleksandr Miroshnyk, Andrii Kondratiev","doi":"10.3390/lubricants11110457","DOIUrl":null,"url":null,"abstract":"Based on the analysis of standards for the testing of lubricants, both liquid and plastic, on a four-ball tribometer, and the analysis of the parameters by which lubricants are evaluated, this paper proposes a methodology and an integral parameter for the estimation of tribological properties. The methodological approach proposed in this paper allows for the integration of a variety of parameters provided in the standards for the testing of lubricants into one indicator. Herein, we show that the developed technique is based on the energy approach and takes into account the specific wear work of the test material (steel balls) in the lubricating medium to be investigated. The results of laboratory tests of a wide range of lubricants are presented: hydraulic fluids, motor and transmission oils of various purposes and classifications. It is shown that the magnitude of the integral parameter can be used to assess the effectiveness of anti-wear and anti-scuff additives in base lubricants, as well as the ranges of their applications. This allows for differentiation and quantitative evaluation of the effectiveness of such additives. The obtained results allow us to state that all tests according to the developed method are reproducible and homogeneous, which is confirmed using the Cochran criterion. The coefficient of variation during testing does not exceed 18%. We show that the presented methodology and the integral parameter can be used in the first stage of the laboratory selection tests of new lubricants and additives of various origins, reducing the costs of their development and implementation.","PeriodicalId":18135,"journal":{"name":"Lubricants","volume":"9 1","pages":"0"},"PeriodicalIF":3.1000,"publicationDate":"2023-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Methodological Approach to Assessing the Tribological Properties of Lubricants Using a Four-Ball Tribometer\",\"authors\":\"Tareq M. A. Al-Quraan, Fadi Alfaqs, Jamil Haddad, Viktor Vojtov, Anton Voitov, Andrey Kravtsov, Oleksandr Miroshnyk, Andrii Kondratiev\",\"doi\":\"10.3390/lubricants11110457\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Based on the analysis of standards for the testing of lubricants, both liquid and plastic, on a four-ball tribometer, and the analysis of the parameters by which lubricants are evaluated, this paper proposes a methodology and an integral parameter for the estimation of tribological properties. The methodological approach proposed in this paper allows for the integration of a variety of parameters provided in the standards for the testing of lubricants into one indicator. Herein, we show that the developed technique is based on the energy approach and takes into account the specific wear work of the test material (steel balls) in the lubricating medium to be investigated. The results of laboratory tests of a wide range of lubricants are presented: hydraulic fluids, motor and transmission oils of various purposes and classifications. It is shown that the magnitude of the integral parameter can be used to assess the effectiveness of anti-wear and anti-scuff additives in base lubricants, as well as the ranges of their applications. This allows for differentiation and quantitative evaluation of the effectiveness of such additives. The obtained results allow us to state that all tests according to the developed method are reproducible and homogeneous, which is confirmed using the Cochran criterion. The coefficient of variation during testing does not exceed 18%. We show that the presented methodology and the integral parameter can be used in the first stage of the laboratory selection tests of new lubricants and additives of various origins, reducing the costs of their development and implementation.\",\"PeriodicalId\":18135,\"journal\":{\"name\":\"Lubricants\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2023-10-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Lubricants\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/lubricants11110457\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lubricants","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/lubricants11110457","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

摘要

本文在分析液体和塑料润滑剂在四球摩擦计上的测试标准和评估润滑剂的参数的基础上,提出了一种评估润滑剂摩擦学性能的方法和积分参数。本文提出的方法方法允许将润滑油测试标准中提供的各种参数集成为一个指标。在此,我们表明,开发的技术是基于能量方法,并考虑到测试材料(钢球)在待研究的润滑介质中的特定磨损功。介绍了各种润滑油的实验室测试结果:液压油、各种用途和分类的马达和传动油。结果表明,积分参数的大小可以用来评估基础润滑油中抗磨和抗磨损添加剂的有效性,以及它们的应用范围。这样就可以对这些添加剂的有效性进行区分和定量评估。所获得的结果使我们能够声明,根据所开发的方法的所有测试是可重复的和均匀的,这是用科克伦准则证实。试验过程中的变异系数不超过18%。结果表明,所提出的方法和积分参数可用于各种来源的新润滑油和添加剂的实验室选择测试的第一阶段,从而降低了其开发和实施的成本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Methodological Approach to Assessing the Tribological Properties of Lubricants Using a Four-Ball Tribometer
Based on the analysis of standards for the testing of lubricants, both liquid and plastic, on a four-ball tribometer, and the analysis of the parameters by which lubricants are evaluated, this paper proposes a methodology and an integral parameter for the estimation of tribological properties. The methodological approach proposed in this paper allows for the integration of a variety of parameters provided in the standards for the testing of lubricants into one indicator. Herein, we show that the developed technique is based on the energy approach and takes into account the specific wear work of the test material (steel balls) in the lubricating medium to be investigated. The results of laboratory tests of a wide range of lubricants are presented: hydraulic fluids, motor and transmission oils of various purposes and classifications. It is shown that the magnitude of the integral parameter can be used to assess the effectiveness of anti-wear and anti-scuff additives in base lubricants, as well as the ranges of their applications. This allows for differentiation and quantitative evaluation of the effectiveness of such additives. The obtained results allow us to state that all tests according to the developed method are reproducible and homogeneous, which is confirmed using the Cochran criterion. The coefficient of variation during testing does not exceed 18%. We show that the presented methodology and the integral parameter can be used in the first stage of the laboratory selection tests of new lubricants and additives of various origins, reducing the costs of their development and implementation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Lubricants
Lubricants Engineering-Mechanical Engineering
CiteScore
3.60
自引率
25.70%
发文量
293
审稿时长
11 weeks
期刊介绍: This journal is dedicated to the field of Tribology and closely related disciplines. This includes the fundamentals of the following topics: -Lubrication, comprising hydrostatics, hydrodynamics, elastohydrodynamics, mixed and boundary regimes of lubrication -Friction, comprising viscous shear, Newtonian and non-Newtonian traction, boundary friction -Wear, including adhesion, abrasion, tribo-corrosion, scuffing and scoring -Cavitation and erosion -Sub-surface stressing, fatigue spalling, pitting, micro-pitting -Contact Mechanics: elasticity, elasto-plasticity, adhesion, viscoelasticity, poroelasticity, coatings and solid lubricants, layered bonded and unbonded solids -Surface Science: topography, tribo-film formation, lubricant–surface combination, surface texturing, micro-hydrodynamics, micro-elastohydrodynamics -Rheology: Newtonian, non-Newtonian fluids, dilatants, pseudo-plastics, thixotropy, shear thinning -Physical chemistry of lubricants, boundary active species, adsorption, bonding
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信