{"title":"以稀疏性为导向、以 MRAM 为中心的高效神经网络推理计算","authors":"Jia-Le Cui;Yanan Guo;Juntong Chen;Bo Liu;Hao Cai","doi":"10.1109/TETC.2023.3326312","DOIUrl":null,"url":null,"abstract":"Near-memory computing (NMC) and in- memory computing (IMC) paradigms show great importance in non-von Neumann architecture. Spin-transfer torque magnetic random access memory (STT-MRAM) is considered as a promising candidate to realize both NMC and IMC for resource-constrained applications. In this work, two MRAM-centric computing frameworks are proposed: triple-skipping NMC (TS-NMC) and analog-multi-bit-sparsity IMC (AMS-IMC). The TS-NMC exploits the sparsity of activations and weights to implement a write-read-calculation triple skipping computing scheme by utilizing a sparse flag generator. The AMS-IMC with reconfigured computing bit-cell and flag generator accommodate bit-level activation sparsity in the computing. STT-MRAM array and its peripheral circuits are implemented with an industrial 28-nm CMOS design-kit and an MTJ compact model. The triple-skipping scheme can reduce memory access energy consumption by 51.5× when processing zero vectors, compared to processing non-zero vectors. The energy efficiency of AMS-IMC is improved by 5.9× and 1.5× (with 75% input sparsity) as compared to the conventional NMC framework and existing analog IMC framework. Verification results show that TS-NMC and AMS-IMC achieved 98.6% and 97.5% inference accuracy in MNIST classification, with energy consumption of 14.2 nJ/pattern and 12.7 nJ/pattern, respectively.","PeriodicalId":13156,"journal":{"name":"IEEE Transactions on Emerging Topics in Computing","volume":"12 1","pages":"97-108"},"PeriodicalIF":5.1000,"publicationDate":"2023-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sparsity-Oriented MRAM-Centric Computing for Efficient Neural Network Inference\",\"authors\":\"Jia-Le Cui;Yanan Guo;Juntong Chen;Bo Liu;Hao Cai\",\"doi\":\"10.1109/TETC.2023.3326312\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Near-memory computing (NMC) and in- memory computing (IMC) paradigms show great importance in non-von Neumann architecture. Spin-transfer torque magnetic random access memory (STT-MRAM) is considered as a promising candidate to realize both NMC and IMC for resource-constrained applications. In this work, two MRAM-centric computing frameworks are proposed: triple-skipping NMC (TS-NMC) and analog-multi-bit-sparsity IMC (AMS-IMC). The TS-NMC exploits the sparsity of activations and weights to implement a write-read-calculation triple skipping computing scheme by utilizing a sparse flag generator. The AMS-IMC with reconfigured computing bit-cell and flag generator accommodate bit-level activation sparsity in the computing. STT-MRAM array and its peripheral circuits are implemented with an industrial 28-nm CMOS design-kit and an MTJ compact model. The triple-skipping scheme can reduce memory access energy consumption by 51.5× when processing zero vectors, compared to processing non-zero vectors. The energy efficiency of AMS-IMC is improved by 5.9× and 1.5× (with 75% input sparsity) as compared to the conventional NMC framework and existing analog IMC framework. Verification results show that TS-NMC and AMS-IMC achieved 98.6% and 97.5% inference accuracy in MNIST classification, with energy consumption of 14.2 nJ/pattern and 12.7 nJ/pattern, respectively.\",\"PeriodicalId\":13156,\"journal\":{\"name\":\"IEEE Transactions on Emerging Topics in Computing\",\"volume\":\"12 1\",\"pages\":\"97-108\"},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2023-10-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Emerging Topics in Computing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10298042/\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Emerging Topics in Computing","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10298042/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Sparsity-Oriented MRAM-Centric Computing for Efficient Neural Network Inference
Near-memory computing (NMC) and in- memory computing (IMC) paradigms show great importance in non-von Neumann architecture. Spin-transfer torque magnetic random access memory (STT-MRAM) is considered as a promising candidate to realize both NMC and IMC for resource-constrained applications. In this work, two MRAM-centric computing frameworks are proposed: triple-skipping NMC (TS-NMC) and analog-multi-bit-sparsity IMC (AMS-IMC). The TS-NMC exploits the sparsity of activations and weights to implement a write-read-calculation triple skipping computing scheme by utilizing a sparse flag generator. The AMS-IMC with reconfigured computing bit-cell and flag generator accommodate bit-level activation sparsity in the computing. STT-MRAM array and its peripheral circuits are implemented with an industrial 28-nm CMOS design-kit and an MTJ compact model. The triple-skipping scheme can reduce memory access energy consumption by 51.5× when processing zero vectors, compared to processing non-zero vectors. The energy efficiency of AMS-IMC is improved by 5.9× and 1.5× (with 75% input sparsity) as compared to the conventional NMC framework and existing analog IMC framework. Verification results show that TS-NMC and AMS-IMC achieved 98.6% and 97.5% inference accuracy in MNIST classification, with energy consumption of 14.2 nJ/pattern and 12.7 nJ/pattern, respectively.
期刊介绍:
IEEE Transactions on Emerging Topics in Computing publishes papers on emerging aspects of computer science, computing technology, and computing applications not currently covered by other IEEE Computer Society Transactions. Some examples of emerging topics in computing include: IT for Green, Synthetic and organic computing structures and systems, Advanced analytics, Social/occupational computing, Location-based/client computer systems, Morphic computer design, Electronic game systems, & Health-care IT.