利用全民医疗保健系统中的行政数据人口登记册,使用堆叠式机器学习算法识别非成人注意力缺陷/多动症患者

JCPP advances Pub Date : 2023-09-18 DOI:10.1002/jcv2.12193
David Roche, Toni Mora, Jordi Cid
{"title":"利用全民医疗保健系统中的行政数据人口登记册,使用堆叠式机器学习算法识别非成人注意力缺陷/多动症患者","authors":"David Roche,&nbsp;Toni Mora,&nbsp;Jordi Cid","doi":"10.1002/jcv2.12193","DOIUrl":null,"url":null,"abstract":"<div>\n \n \n <section>\n \n <h3> Background</h3>\n \n <p>This research project aims to build a Machine Learning algorithm (ML) to predict first-time ADHD diagnosis, given that it is the most frequent mental disorder for the non-adult population.</p>\n </section>\n \n <section>\n \n <h3> Methods</h3>\n \n <p>We used a stacked model combining 4 ML approaches to predict the presence of ADHD. The dataset contains data from population health care administrative registers in Catalonia comprising 1,225,406 non-adult individuals for 2013–2017, linked to socioeconomic characteristics and dispensed drug consumption. We defined a measure of proper ADHD diagnoses based on medical factors.</p>\n </section>\n \n <section>\n \n <h3> Results</h3>\n \n <p>We obtained an AUC of 79.6% with the stacked model. Significant variables that explain the ADHD presence are the dispersion across patients' visits to healthcare providers; the number of visits, diagnoses related to other mental disorders and drug consumption; age, and sex.</p>\n </section>\n \n <section>\n \n <h3> Conclusions</h3>\n \n <p>ML techniques can help predict ADHD early diagnosis using administrative registers. We must continuously investigate the potential use of ADHD early detection strategies and intervention in the health system.</p>\n </section>\n </div>","PeriodicalId":73542,"journal":{"name":"JCPP advances","volume":"4 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jcv2.12193","citationCount":"0","resultStr":"{\"title\":\"Identifying non-adult attention-deficit/hyperactivity disorder individuals using a stacked machine learning algorithm using administrative data population registers in a universal healthcare system\",\"authors\":\"David Roche,&nbsp;Toni Mora,&nbsp;Jordi Cid\",\"doi\":\"10.1002/jcv2.12193\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n \\n <section>\\n \\n <h3> Background</h3>\\n \\n <p>This research project aims to build a Machine Learning algorithm (ML) to predict first-time ADHD diagnosis, given that it is the most frequent mental disorder for the non-adult population.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Methods</h3>\\n \\n <p>We used a stacked model combining 4 ML approaches to predict the presence of ADHD. The dataset contains data from population health care administrative registers in Catalonia comprising 1,225,406 non-adult individuals for 2013–2017, linked to socioeconomic characteristics and dispensed drug consumption. We defined a measure of proper ADHD diagnoses based on medical factors.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Results</h3>\\n \\n <p>We obtained an AUC of 79.6% with the stacked model. Significant variables that explain the ADHD presence are the dispersion across patients' visits to healthcare providers; the number of visits, diagnoses related to other mental disorders and drug consumption; age, and sex.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Conclusions</h3>\\n \\n <p>ML techniques can help predict ADHD early diagnosis using administrative registers. We must continuously investigate the potential use of ADHD early detection strategies and intervention in the health system.</p>\\n </section>\\n </div>\",\"PeriodicalId\":73542,\"journal\":{\"name\":\"JCPP advances\",\"volume\":\"4 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jcv2.12193\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"JCPP advances\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jcv2.12193\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"JCPP advances","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jcv2.12193","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

背景 本研究项目旨在建立一种机器学习算法(ML)来预测多动症的首次诊断,因为多动症是非成年人群中最常见的精神疾病。 方法 我们使用了一个结合 4 种 ML 方法的堆叠模型来预测多动症的存在。数据集包含来自加泰罗尼亚人口医疗保健管理登记册的数据,其中包含 2013-2017 年间 1,225,406 名非成年人,这些数据与社会经济特征和配药消费相关联。我们根据医疗因素确定了正确诊断多动症的标准。 结果 叠加模型的 AUC 为 79.6%。解释多动症存在的重要变量包括患者就诊于医疗机构的分散性、就诊次数、与其他精神障碍和药物消耗相关的诊断、年龄和性别。 结论 ML 技术有助于利用行政登记册预测多动症的早期诊断。我们必须继续研究在医疗系统中使用多动症早期检测策略和干预措施的可能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Identifying non-adult attention-deficit/hyperactivity disorder individuals using a stacked machine learning algorithm using administrative data population registers in a universal healthcare system

Identifying non-adult attention-deficit/hyperactivity disorder individuals using a stacked machine learning algorithm using administrative data population registers in a universal healthcare system

Background

This research project aims to build a Machine Learning algorithm (ML) to predict first-time ADHD diagnosis, given that it is the most frequent mental disorder for the non-adult population.

Methods

We used a stacked model combining 4 ML approaches to predict the presence of ADHD. The dataset contains data from population health care administrative registers in Catalonia comprising 1,225,406 non-adult individuals for 2013–2017, linked to socioeconomic characteristics and dispensed drug consumption. We defined a measure of proper ADHD diagnoses based on medical factors.

Results

We obtained an AUC of 79.6% with the stacked model. Significant variables that explain the ADHD presence are the dispersion across patients' visits to healthcare providers; the number of visits, diagnoses related to other mental disorders and drug consumption; age, and sex.

Conclusions

ML techniques can help predict ADHD early diagnosis using administrative registers. We must continuously investigate the potential use of ADHD early detection strategies and intervention in the health system.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
13 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信