利用地貌学突出海底大尺度的形态多样性

IF 2 4区 地球科学 Q1 GEOLOGY
Margaret Dolan, Lilja Rún Bjarnadóttir
{"title":"利用地貌学突出海底大尺度的形态多样性","authors":"Margaret Dolan, Lilja Rún Bjarnadóttir","doi":"10.34194/geusb.v52.8337","DOIUrl":null,"url":null,"abstract":"Morphometric diversity is an important component of overall seabed geodiversity. Automated methods for classification of morphometric features (ridges, peaks, valleys etc.) provide a convenient way of classifying large volumes of data in a consistent and repeatable way and a basis for assessing morphometric diversity. Here, we apply ‘geomorphons’, a pattern recognition approach to morphometric feature classification, to 100 m resolution multibeam bathymetry data in the Barents and Norwegian Seas, Norway. The study area spans depths from a few metres to nearly 6000 m across several geological settings. Ten unique morphometric features are delineated by the geomorphon analysis. From these results, we compute the variety of features per 10 km2. This simple ‘geomorphon richness’ measure highlights broad-scale morphometric diversity across the study area. We compare the richness results with terrain attributes and across physiographic regions. Our results provide new regional insights, which together with more detailed information will help guide follow-up surveys as well as identifying diversity hotspots, which may require special management.","PeriodicalId":48475,"journal":{"name":"Geus Bulletin","volume":"36 1","pages":"0"},"PeriodicalIF":2.0000,"publicationDate":"2023-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Highlighting broad-scale morphometric diversity of the seabed using geomorphons\",\"authors\":\"Margaret Dolan, Lilja Rún Bjarnadóttir\",\"doi\":\"10.34194/geusb.v52.8337\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Morphometric diversity is an important component of overall seabed geodiversity. Automated methods for classification of morphometric features (ridges, peaks, valleys etc.) provide a convenient way of classifying large volumes of data in a consistent and repeatable way and a basis for assessing morphometric diversity. Here, we apply ‘geomorphons’, a pattern recognition approach to morphometric feature classification, to 100 m resolution multibeam bathymetry data in the Barents and Norwegian Seas, Norway. The study area spans depths from a few metres to nearly 6000 m across several geological settings. Ten unique morphometric features are delineated by the geomorphon analysis. From these results, we compute the variety of features per 10 km2. This simple ‘geomorphon richness’ measure highlights broad-scale morphometric diversity across the study area. We compare the richness results with terrain attributes and across physiographic regions. Our results provide new regional insights, which together with more detailed information will help guide follow-up surveys as well as identifying diversity hotspots, which may require special management.\",\"PeriodicalId\":48475,\"journal\":{\"name\":\"Geus Bulletin\",\"volume\":\"36 1\",\"pages\":\"0\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2023-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geus Bulletin\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.34194/geusb.v52.8337\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geus Bulletin","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.34194/geusb.v52.8337","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

形态多样性是海底地质多样性的重要组成部分。形态学特征(脊、峰、谷等)的自动分类方法提供了一种方便的方法,以一致和可重复的方式对大量数据进行分类,并为评估形态学多样性奠定了基础。在这里,我们将“地貌学”(一种形态特征分类的模式识别方法)应用于挪威巴伦支海和挪威海的100米分辨率多波束测深数据。研究区域的深度从几米到近6000米,跨越了几个地质环境。通过地貌学分析,描绘了十个独特的形态特征。根据这些结果,我们计算每10平方公里的特征的多样性。这种简单的“地貌丰富度”测量强调了整个研究区域的大尺度形态多样性。我们比较了不同地形属性和不同地理区域的丰富度结果。我们的研究结果提供了新的区域视角,与更详细的信息一起,将有助于指导后续调查以及识别可能需要特殊管理的多样性热点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Highlighting broad-scale morphometric diversity of the seabed using geomorphons
Morphometric diversity is an important component of overall seabed geodiversity. Automated methods for classification of morphometric features (ridges, peaks, valleys etc.) provide a convenient way of classifying large volumes of data in a consistent and repeatable way and a basis for assessing morphometric diversity. Here, we apply ‘geomorphons’, a pattern recognition approach to morphometric feature classification, to 100 m resolution multibeam bathymetry data in the Barents and Norwegian Seas, Norway. The study area spans depths from a few metres to nearly 6000 m across several geological settings. Ten unique morphometric features are delineated by the geomorphon analysis. From these results, we compute the variety of features per 10 km2. This simple ‘geomorphon richness’ measure highlights broad-scale morphometric diversity across the study area. We compare the richness results with terrain attributes and across physiographic regions. Our results provide new regional insights, which together with more detailed information will help guide follow-up surveys as well as identifying diversity hotspots, which may require special management.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Geus Bulletin
Geus Bulletin GEOLOGY-
CiteScore
2.80
自引率
17.60%
发文量
8
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信