hg诱导的sev介导HK-2细胞的生物力学

Q1 Engineering
Fan Yang, Jiajia Wang, Tuoyu Ju, Shuwei Wang, Kaige Qu, Zhengxun Song, Yujuan Chen, Zuobin Wang
{"title":"hg诱导的sev介导HK-2细胞的生物力学","authors":"Fan Yang, Jiajia Wang, Tuoyu Ju, Shuwei Wang, Kaige Qu, Zhengxun Song, Yujuan Chen, Zuobin Wang","doi":"10.1007/s41871-023-00214-5","DOIUrl":null,"url":null,"abstract":"Abstract Small extracellular vesicles (sEVs) participate in the pathological progression of high glucose (HG)-induced kidney injury, which is closely related to diabetic nephropathy. How sEVs specifically mediate the cell biomechanics underlying HG injury is unclear. Herein, we utilized a versatile atomic force microscope to determine the contributions of sEVs in HG-induced cellular injury. The sEVs extracted from the culture medium of human proximal tubule kidney (HK-2) cells treated by HG for 72 h (HG-induced sEVs) were verified and analyzed by multiple techniques, and the results indicated the effective production and the effect of dehydration on the shape of HG-induced sEVs. Further investigation on the morphologies of HK-2 cells treated by HG-induced sEVs showed that the surface roughness of the HK-2 cells increased, and their pseudopodia transitioned from lamellipodia to filopodia, with almost doubled mean pseudopodia length. Quantitative analysis of the mechanical responses of the cells revealed that the mean Young’s modulus increased by 26.2%, and the mean adhesion decreased by 36.8%. The indirect mediation of cellular biomechanics guided by HG-induced sEVs was evaluated by comparing it with previously studied direct HG injury. The HG-induced sEVs caused a greater reduction in cell adhesion and an increase in Young’s modulus compared with direct HG stimulation. This work suggested the ability of HG-induced sEVs to elicit specific biomechanical responses during HG injury, advancing the understanding of the injury mechanism caused by HG. The comparison of the cellular biomechanics between direct and indirect HG stimulations through HG-induced sEVs can be beneficial for the diagnosis and treatment of kidney injury.","PeriodicalId":52345,"journal":{"name":"Nanomanufacturing and Metrology","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"HG-Induced sEVs Mediate Biomechanics of HK-2 Cells\",\"authors\":\"Fan Yang, Jiajia Wang, Tuoyu Ju, Shuwei Wang, Kaige Qu, Zhengxun Song, Yujuan Chen, Zuobin Wang\",\"doi\":\"10.1007/s41871-023-00214-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Small extracellular vesicles (sEVs) participate in the pathological progression of high glucose (HG)-induced kidney injury, which is closely related to diabetic nephropathy. How sEVs specifically mediate the cell biomechanics underlying HG injury is unclear. Herein, we utilized a versatile atomic force microscope to determine the contributions of sEVs in HG-induced cellular injury. The sEVs extracted from the culture medium of human proximal tubule kidney (HK-2) cells treated by HG for 72 h (HG-induced sEVs) were verified and analyzed by multiple techniques, and the results indicated the effective production and the effect of dehydration on the shape of HG-induced sEVs. Further investigation on the morphologies of HK-2 cells treated by HG-induced sEVs showed that the surface roughness of the HK-2 cells increased, and their pseudopodia transitioned from lamellipodia to filopodia, with almost doubled mean pseudopodia length. Quantitative analysis of the mechanical responses of the cells revealed that the mean Young’s modulus increased by 26.2%, and the mean adhesion decreased by 36.8%. The indirect mediation of cellular biomechanics guided by HG-induced sEVs was evaluated by comparing it with previously studied direct HG injury. The HG-induced sEVs caused a greater reduction in cell adhesion and an increase in Young’s modulus compared with direct HG stimulation. This work suggested the ability of HG-induced sEVs to elicit specific biomechanical responses during HG injury, advancing the understanding of the injury mechanism caused by HG. The comparison of the cellular biomechanics between direct and indirect HG stimulations through HG-induced sEVs can be beneficial for the diagnosis and treatment of kidney injury.\",\"PeriodicalId\":52345,\"journal\":{\"name\":\"Nanomanufacturing and Metrology\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanomanufacturing and Metrology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s41871-023-00214-5\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanomanufacturing and Metrology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s41871-023-00214-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

小细胞外囊泡(sev)参与高糖(HG)所致肾损伤的病理进展,与糖尿病肾病密切相关。sev如何特异性介导HG损伤下的细胞生物力学尚不清楚。在此,我们利用多功能原子力显微镜来确定sev在hg诱导的细胞损伤中的作用。从HG处理72 h的人近端小管肾(HK-2)细胞培养基中提取的sev (HG诱导的sev)通过多种技术进行验证和分析,结果表明HG诱导的sev的有效产生以及脱水对其形状的影响。对经hg诱导的sev处理的HK-2细胞形态学的进一步研究表明,HK-2细胞表面粗糙度增加,伪足由板足向丝状足过渡,伪足平均长度几乎增加了一倍。对细胞力学响应的定量分析表明,杨氏模量平均增加26.2%,粘附力平均下降36.8%。通过与先前研究的HG直接损伤的比较,评估HG诱导sev介导的细胞生物力学的间接中介作用。与直接HG刺激相比,HG诱导的sev导致细胞粘附更大的减少和杨氏模量的增加。本研究表明,HG诱导的sev能够在HG损伤过程中引起特异性的生物力学反应,促进了对HG损伤机制的理解。通过HG诱导的sev,比较直接和间接HG刺激对肾损伤的细胞生物力学影响,有助于肾损伤的诊断和治疗。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
HG-Induced sEVs Mediate Biomechanics of HK-2 Cells
Abstract Small extracellular vesicles (sEVs) participate in the pathological progression of high glucose (HG)-induced kidney injury, which is closely related to diabetic nephropathy. How sEVs specifically mediate the cell biomechanics underlying HG injury is unclear. Herein, we utilized a versatile atomic force microscope to determine the contributions of sEVs in HG-induced cellular injury. The sEVs extracted from the culture medium of human proximal tubule kidney (HK-2) cells treated by HG for 72 h (HG-induced sEVs) were verified and analyzed by multiple techniques, and the results indicated the effective production and the effect of dehydration on the shape of HG-induced sEVs. Further investigation on the morphologies of HK-2 cells treated by HG-induced sEVs showed that the surface roughness of the HK-2 cells increased, and their pseudopodia transitioned from lamellipodia to filopodia, with almost doubled mean pseudopodia length. Quantitative analysis of the mechanical responses of the cells revealed that the mean Young’s modulus increased by 26.2%, and the mean adhesion decreased by 36.8%. The indirect mediation of cellular biomechanics guided by HG-induced sEVs was evaluated by comparing it with previously studied direct HG injury. The HG-induced sEVs caused a greater reduction in cell adhesion and an increase in Young’s modulus compared with direct HG stimulation. This work suggested the ability of HG-induced sEVs to elicit specific biomechanical responses during HG injury, advancing the understanding of the injury mechanism caused by HG. The comparison of the cellular biomechanics between direct and indirect HG stimulations through HG-induced sEVs can be beneficial for the diagnosis and treatment of kidney injury.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nanomanufacturing and Metrology
Nanomanufacturing and Metrology Materials Science-Materials Science (miscellaneous)
CiteScore
5.40
自引率
0.00%
发文量
36
期刊介绍: Nanomanufacturing and Metrology is a peer-reviewed, international and interdisciplinary research journal and is the first journal over the world that provides a principal forum for nano-manufacturing and nano-metrology.Nanomanufacturing and Metrology publishes in the forms including original articles, cutting-edge communications, timely review papers, technical reports, and case studies. Special issues devoted to developments in important topics in nano-manufacturing and metrology will be published periodically.Nanomanufacturing and Metrology publishes articles that focus on, but are not limited to, the following areas:• Nano-manufacturing and metrology• Atomic manufacturing and metrology• Micro-manufacturing and metrology• Physics, chemistry, and materials in micro-manufacturing, nano-manufacturing, and atomic manufacturing• Tools and processes for micro-manufacturing, nano-manufacturing and atomic manufacturing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信