利用谱图小波变换进行网络时间序列预测

IF 6.9 2区 经济学 Q1 ECONOMICS
Kyusoon Kim, Hee-Seok Oh
{"title":"利用谱图小波变换进行网络时间序列预测","authors":"Kyusoon Kim,&nbsp;Hee-Seok Oh","doi":"10.1016/j.ijforecast.2023.08.006","DOIUrl":null,"url":null,"abstract":"<div><p>We propose a novel method for forecasting network time series that occur in graphs or networks. Our approach is based on a spectral graph wavelet transform (SGWT) that provides the localized behavior of graph signals around each node. The proposed method improves forecasting performance over other existing methods. In particular, the advantages of the proposed method stand out when signals observed on a graph are inhomogeneous or non-stationary. We demonstrate the strength of the proposed approach through real-world data analysis. This analysis uses two network time series datasets: the daily number of people getting on and off the Seoul Metropolitan Subway, and daily Covid-19 confirmed cases reported in South Korea. We further conduct a simulation study to evaluate the effectiveness of the proposed method.</p></div>","PeriodicalId":14061,"journal":{"name":"International Journal of Forecasting","volume":null,"pages":null},"PeriodicalIF":6.9000,"publicationDate":"2023-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Network time series forecasting using spectral graph wavelet transform\",\"authors\":\"Kyusoon Kim,&nbsp;Hee-Seok Oh\",\"doi\":\"10.1016/j.ijforecast.2023.08.006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We propose a novel method for forecasting network time series that occur in graphs or networks. Our approach is based on a spectral graph wavelet transform (SGWT) that provides the localized behavior of graph signals around each node. The proposed method improves forecasting performance over other existing methods. In particular, the advantages of the proposed method stand out when signals observed on a graph are inhomogeneous or non-stationary. We demonstrate the strength of the proposed approach through real-world data analysis. This analysis uses two network time series datasets: the daily number of people getting on and off the Seoul Metropolitan Subway, and daily Covid-19 confirmed cases reported in South Korea. We further conduct a simulation study to evaluate the effectiveness of the proposed method.</p></div>\",\"PeriodicalId\":14061,\"journal\":{\"name\":\"International Journal of Forecasting\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.9000,\"publicationDate\":\"2023-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Forecasting\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S016920702300081X\",\"RegionNum\":2,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ECONOMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Forecasting","FirstCategoryId":"96","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S016920702300081X","RegionNum":2,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了一种新方法,用于预测图形或网络中出现的网络时间序列。我们的方法基于谱图小波变换 (SGWT),它提供了每个节点周围图信号的局部行为。与其他现有方法相比,我们提出的方法提高了预测性能。特别是,当在图上观测到的信号不均匀或非稳态时,所提出方法的优势尤为突出。我们通过实际数据分析证明了所提方法的优势。该分析使用了两个网络时间序列数据集:每天上下首尔地铁的人数和韩国每天报告的 Covid-19 确诊病例。我们进一步进行了模拟研究,以评估所提出方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Network time series forecasting using spectral graph wavelet transform

We propose a novel method for forecasting network time series that occur in graphs or networks. Our approach is based on a spectral graph wavelet transform (SGWT) that provides the localized behavior of graph signals around each node. The proposed method improves forecasting performance over other existing methods. In particular, the advantages of the proposed method stand out when signals observed on a graph are inhomogeneous or non-stationary. We demonstrate the strength of the proposed approach through real-world data analysis. This analysis uses two network time series datasets: the daily number of people getting on and off the Seoul Metropolitan Subway, and daily Covid-19 confirmed cases reported in South Korea. We further conduct a simulation study to evaluate the effectiveness of the proposed method.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
17.10
自引率
11.40%
发文量
189
审稿时长
77 days
期刊介绍: The International Journal of Forecasting is a leading journal in its field that publishes high quality refereed papers. It aims to bridge the gap between theory and practice, making forecasting useful and relevant for decision and policy makers. The journal places strong emphasis on empirical studies, evaluation activities, implementation research, and improving the practice of forecasting. It welcomes various points of view and encourages debate to find solutions to field-related problems. The journal is the official publication of the International Institute of Forecasters (IIF) and is indexed in Sociological Abstracts, Journal of Economic Literature, Statistical Theory and Method Abstracts, INSPEC, Current Contents, UMI Data Courier, RePEc, Academic Journal Guide, CIS, IAOR, and Social Sciences Citation Index.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信