{"title":"利用谱图小波变换进行网络时间序列预测","authors":"Kyusoon Kim, Hee-Seok Oh","doi":"10.1016/j.ijforecast.2023.08.006","DOIUrl":null,"url":null,"abstract":"<div><p>We propose a novel method for forecasting network time series that occur in graphs or networks. Our approach is based on a spectral graph wavelet transform (SGWT) that provides the localized behavior of graph signals around each node. The proposed method improves forecasting performance over other existing methods. In particular, the advantages of the proposed method stand out when signals observed on a graph are inhomogeneous or non-stationary. We demonstrate the strength of the proposed approach through real-world data analysis. This analysis uses two network time series datasets: the daily number of people getting on and off the Seoul Metropolitan Subway, and daily Covid-19 confirmed cases reported in South Korea. We further conduct a simulation study to evaluate the effectiveness of the proposed method.</p></div>","PeriodicalId":14061,"journal":{"name":"International Journal of Forecasting","volume":null,"pages":null},"PeriodicalIF":6.9000,"publicationDate":"2023-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Network time series forecasting using spectral graph wavelet transform\",\"authors\":\"Kyusoon Kim, Hee-Seok Oh\",\"doi\":\"10.1016/j.ijforecast.2023.08.006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We propose a novel method for forecasting network time series that occur in graphs or networks. Our approach is based on a spectral graph wavelet transform (SGWT) that provides the localized behavior of graph signals around each node. The proposed method improves forecasting performance over other existing methods. In particular, the advantages of the proposed method stand out when signals observed on a graph are inhomogeneous or non-stationary. We demonstrate the strength of the proposed approach through real-world data analysis. This analysis uses two network time series datasets: the daily number of people getting on and off the Seoul Metropolitan Subway, and daily Covid-19 confirmed cases reported in South Korea. We further conduct a simulation study to evaluate the effectiveness of the proposed method.</p></div>\",\"PeriodicalId\":14061,\"journal\":{\"name\":\"International Journal of Forecasting\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.9000,\"publicationDate\":\"2023-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Forecasting\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S016920702300081X\",\"RegionNum\":2,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ECONOMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Forecasting","FirstCategoryId":"96","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S016920702300081X","RegionNum":2,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECONOMICS","Score":null,"Total":0}
Network time series forecasting using spectral graph wavelet transform
We propose a novel method for forecasting network time series that occur in graphs or networks. Our approach is based on a spectral graph wavelet transform (SGWT) that provides the localized behavior of graph signals around each node. The proposed method improves forecasting performance over other existing methods. In particular, the advantages of the proposed method stand out when signals observed on a graph are inhomogeneous or non-stationary. We demonstrate the strength of the proposed approach through real-world data analysis. This analysis uses two network time series datasets: the daily number of people getting on and off the Seoul Metropolitan Subway, and daily Covid-19 confirmed cases reported in South Korea. We further conduct a simulation study to evaluate the effectiveness of the proposed method.
期刊介绍:
The International Journal of Forecasting is a leading journal in its field that publishes high quality refereed papers. It aims to bridge the gap between theory and practice, making forecasting useful and relevant for decision and policy makers. The journal places strong emphasis on empirical studies, evaluation activities, implementation research, and improving the practice of forecasting. It welcomes various points of view and encourages debate to find solutions to field-related problems. The journal is the official publication of the International Institute of Forecasters (IIF) and is indexed in Sociological Abstracts, Journal of Economic Literature, Statistical Theory and Method Abstracts, INSPEC, Current Contents, UMI Data Courier, RePEc, Academic Journal Guide, CIS, IAOR, and Social Sciences Citation Index.