由具有 3 阶轨道点的曲面产生的温和代数,第一部分:散射图

Pub Date : 2023-09-29 DOI:10.1007/s10468-023-10233-x
Daniel Labardini-Fragoso, Lang Mou
{"title":"由具有 3 阶轨道点的曲面产生的温和代数,第一部分:散射图","authors":"Daniel Labardini-Fragoso,&nbsp;Lang Mou","doi":"10.1007/s10468-023-10233-x","DOIUrl":null,"url":null,"abstract":"<div><p>To each triangulation of any surface with marked points on the boundary and orbifold points of order three, we associate a quiver (with loops) with potential whose Jacobian algebra is finite dimensional and gentle. We study the stability scattering diagrams of such gentle algebras and use them to prove that the Caldero–Chapoton map defines a bijection between <span>\\(\\tau \\)</span>-rigid pairs and cluster monomials of the generalized cluster algebra associated to the surface by Chekhov and Shapiro.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10468-023-10233-x.pdf","citationCount":"0","resultStr":"{\"title\":\"Gentle Algebras Arising from Surfaces with Orbifold Points of Order 3, Part I: Scattering Diagrams\",\"authors\":\"Daniel Labardini-Fragoso,&nbsp;Lang Mou\",\"doi\":\"10.1007/s10468-023-10233-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>To each triangulation of any surface with marked points on the boundary and orbifold points of order three, we associate a quiver (with loops) with potential whose Jacobian algebra is finite dimensional and gentle. We study the stability scattering diagrams of such gentle algebras and use them to prove that the Caldero–Chapoton map defines a bijection between <span>\\\\(\\\\tau \\\\)</span>-rigid pairs and cluster monomials of the generalized cluster algebra associated to the surface by Chekhov and Shapiro.</p></div>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-09-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10468-023-10233-x.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10468-023-10233-x\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10468-023-10233-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

对于边界上有标记点和三阶轨道点的任何曲面的每个三角剖分,我们都会关联一个带势能的四元组(带环),其雅各布代数是有限维且平缓的。我们研究了这种平缓代数的稳定性散射图,并用它们证明卡尔德罗-查波顿映射定义了 \(\tau \)-刚性对与契科夫和夏皮罗与曲面相关的广义簇代数的簇单项式之间的双射。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Gentle Algebras Arising from Surfaces with Orbifold Points of Order 3, Part I: Scattering Diagrams

To each triangulation of any surface with marked points on the boundary and orbifold points of order three, we associate a quiver (with loops) with potential whose Jacobian algebra is finite dimensional and gentle. We study the stability scattering diagrams of such gentle algebras and use them to prove that the Caldero–Chapoton map defines a bijection between \(\tau \)-rigid pairs and cluster monomials of the generalized cluster algebra associated to the surface by Chekhov and Shapiro.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信