用于锂存储的金属有机框架衍生 LiFePO4/C 复合材料:原位构建、有效利用和定向修复

IF 10.7 Q1 CHEMISTRY, PHYSICAL
EcoMat Pub Date : 2023-09-29 DOI:10.1002/eom2.12415
Yilin Li, Ziqiang Fan, Zhijian Peng, Zhaohui Xu, Xinyu Zhang, Jian-En Zhou, Xiaoming Lin, Zhenyu Wu, Enyue Zhao, Ronghua Zeng
{"title":"用于锂存储的金属有机框架衍生 LiFePO4/C 复合材料:原位构建、有效利用和定向修复","authors":"Yilin Li,&nbsp;Ziqiang Fan,&nbsp;Zhijian Peng,&nbsp;Zhaohui Xu,&nbsp;Xinyu Zhang,&nbsp;Jian-En Zhou,&nbsp;Xiaoming Lin,&nbsp;Zhenyu Wu,&nbsp;Enyue Zhao,&nbsp;Ronghua Zeng","doi":"10.1002/eom2.12415","DOIUrl":null,"url":null,"abstract":"<p>Hitherto, LiFePO<sub>4</sub> (LFP) is bottlenecked by inferior electronic conductivity and sluggish Li<sup>+</sup> diffusion, which can be resolved by cation doping, morphological engineering, carbon coating, and so forth. Among these methodologies, morphological optimization and carbon modification can warrant a stable operating voltage and prolong the cycling lifespan, which can be accessible by utilizing metal–organic frameworks as self-sacrificing templates. Herein, we conceptualize a strategy to in-situ construct N-doped carbon-coated LFP with Prussian blue analogues as the template, after which electrochemical tests extensively exploit the lithium storage capacity with 153.2 mAh g<sup>−1</sup> after 500 cycles at 0.5 C. However, the capacity failure associated with the inevitable Li<sup>+</sup> loss and destructed carbon layer provides sufficient room for the restoration of LFP after long-term cycling. Motivated by this, the cell performance of LFP/C after targeted restoration using the 3,4-dihydroxybenzonitrile dilithium salt is investigated, revealing a considerable recovered capacity due to the recuperative LFP crystal and uniform carbon layer with homogeneous N-distribution. The computational study also supports the feasibility of N-doped carbon layer in LFP modification. This study envisages a methodology for the performance improvement of LFP from directional fabrication to targeted recovery, providing insights into the manufacturing and reuse of LIB cathodes.</p><p>\n <figure>\n <div><picture>\n <source></source></picture><p></p>\n </div>\n </figure></p>","PeriodicalId":93174,"journal":{"name":"EcoMat","volume":"5 12","pages":""},"PeriodicalIF":10.7000,"publicationDate":"2023-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/eom2.12415","citationCount":"0","resultStr":"{\"title\":\"Metal–organic framework-derived LiFePO4/C composites for lithium storage: In situ construction, effective exploitation, and targeted restoration\",\"authors\":\"Yilin Li,&nbsp;Ziqiang Fan,&nbsp;Zhijian Peng,&nbsp;Zhaohui Xu,&nbsp;Xinyu Zhang,&nbsp;Jian-En Zhou,&nbsp;Xiaoming Lin,&nbsp;Zhenyu Wu,&nbsp;Enyue Zhao,&nbsp;Ronghua Zeng\",\"doi\":\"10.1002/eom2.12415\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Hitherto, LiFePO<sub>4</sub> (LFP) is bottlenecked by inferior electronic conductivity and sluggish Li<sup>+</sup> diffusion, which can be resolved by cation doping, morphological engineering, carbon coating, and so forth. Among these methodologies, morphological optimization and carbon modification can warrant a stable operating voltage and prolong the cycling lifespan, which can be accessible by utilizing metal–organic frameworks as self-sacrificing templates. Herein, we conceptualize a strategy to in-situ construct N-doped carbon-coated LFP with Prussian blue analogues as the template, after which electrochemical tests extensively exploit the lithium storage capacity with 153.2 mAh g<sup>−1</sup> after 500 cycles at 0.5 C. However, the capacity failure associated with the inevitable Li<sup>+</sup> loss and destructed carbon layer provides sufficient room for the restoration of LFP after long-term cycling. Motivated by this, the cell performance of LFP/C after targeted restoration using the 3,4-dihydroxybenzonitrile dilithium salt is investigated, revealing a considerable recovered capacity due to the recuperative LFP crystal and uniform carbon layer with homogeneous N-distribution. The computational study also supports the feasibility of N-doped carbon layer in LFP modification. This study envisages a methodology for the performance improvement of LFP from directional fabrication to targeted recovery, providing insights into the manufacturing and reuse of LIB cathodes.</p><p>\\n <figure>\\n <div><picture>\\n <source></source></picture><p></p>\\n </div>\\n </figure></p>\",\"PeriodicalId\":93174,\"journal\":{\"name\":\"EcoMat\",\"volume\":\"5 12\",\"pages\":\"\"},\"PeriodicalIF\":10.7000,\"publicationDate\":\"2023-09-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/eom2.12415\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EcoMat\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/eom2.12415\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EcoMat","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/eom2.12415","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

迄今为止,LiFePO4(LFP)的瓶颈在于电子传导性较差和 Li+ 扩散缓慢,这可以通过阳离子掺杂、形态工程、碳涂层等方法来解决。在这些方法中,形态优化和碳改性可以保证稳定的工作电压并延长循环寿命,而利用金属有机框架作为自我牺牲模板则可以实现这一点。在此,我们构思了一种以普鲁士蓝类似物为模板原位构建掺杂 N 的碳涂层锂离子电池的策略,经过电化学测试,该电池在 0.5 C 下循环 500 次后,锂存储容量达到 153.2 mAh g-1。受此启发,我们研究了使用 3,4-二羟基苯甲腈二锂盐进行定向修复后的 LFP/C 电池性能,结果表明,由于 LFP 晶体具有恢复能力,且碳层均匀,N 分布均匀,因此电池容量得到了显著恢复。计算研究还证明了掺 N 碳层在 LFP 改性中的可行性。这项研究设想了一种从定向制造到定向回收的 LFP 性能改进方法,为 LIB 阴极的制造和再利用提供了启示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Metal–organic framework-derived LiFePO4/C composites for lithium storage: In situ construction, effective exploitation, and targeted restoration

Metal–organic framework-derived LiFePO4/C composites for lithium storage: In situ construction, effective exploitation, and targeted restoration

Metal–organic framework-derived LiFePO4/C composites for lithium storage: In situ construction, effective exploitation, and targeted restoration

Hitherto, LiFePO4 (LFP) is bottlenecked by inferior electronic conductivity and sluggish Li+ diffusion, which can be resolved by cation doping, morphological engineering, carbon coating, and so forth. Among these methodologies, morphological optimization and carbon modification can warrant a stable operating voltage and prolong the cycling lifespan, which can be accessible by utilizing metal–organic frameworks as self-sacrificing templates. Herein, we conceptualize a strategy to in-situ construct N-doped carbon-coated LFP with Prussian blue analogues as the template, after which electrochemical tests extensively exploit the lithium storage capacity with 153.2 mAh g−1 after 500 cycles at 0.5 C. However, the capacity failure associated with the inevitable Li+ loss and destructed carbon layer provides sufficient room for the restoration of LFP after long-term cycling. Motivated by this, the cell performance of LFP/C after targeted restoration using the 3,4-dihydroxybenzonitrile dilithium salt is investigated, revealing a considerable recovered capacity due to the recuperative LFP crystal and uniform carbon layer with homogeneous N-distribution. The computational study also supports the feasibility of N-doped carbon layer in LFP modification. This study envisages a methodology for the performance improvement of LFP from directional fabrication to targeted recovery, providing insights into the manufacturing and reuse of LIB cathodes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
17.30
自引率
0.00%
发文量
0
审稿时长
4 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信