{"title":"二阶椭圆问题复合曲面网格上的 C1 类耦合有限元","authors":"Ashish Bhole, Hervé Guillard, Boniface Nkonga, Francesca Rapetti","doi":"10.1002/fld.5241","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Finite elements of class <math>\n <mrow>\n <msup>\n <mrow>\n <mi>𝒞</mi>\n </mrow>\n <mrow>\n <mn>1</mn>\n </mrow>\n </msup>\n </mrow></math> are suitable for the computation of magnetohydrodynamics instabilities in tokamak plasmas. In addition, isoparametric approximations allow for a precise alignment of the mesh with the magnetic field line. Mesh alignment is crucial to achieve axisymmetric equilibria accurately. It is also helpful to deal with the anisotropy nature of magnetized plasma flows. In this numerical framework, several practical simulations are now available. They help to understand better the operation of existing devices and predict the optimal strategies for using the international ITER tokamak under construction. However, a mesh-aligned isoparametric representation suffers from the presence of critical points of the magnetic field (magnetic axis, X-point). We here explore a strategy that combines aligned mesh out of the critical points with non-aligned unstructured mesh in a region containing these points. By this strategy, we can avoid highly stretched elements and the numerical difficulties that come with them. The mesh-aligned interpolation uses bi-cubic Hemite-Bézier polynomials on a structured mesh of curved quadrangular elements. On the other hand, we assume reduced cubic Hsieh-Clough-Tocher finite elements on an unstructured triangular mesh. Both meshes overlap, and the resulting formulation is a coupled discrete problem solved iteratively by a suitable one-level Schwarz algorithm. In this paper, we will focus on the Poisson problem on a two-dimensional bounded regular domain. This elliptic equation is a simplified version of the axisymmetric tokamak equilibrium one at the asymptotic limit of infinite major radius (large aspect ratio).</p>\n </div>","PeriodicalId":50348,"journal":{"name":"International Journal for Numerical Methods in Fluids","volume":"96 2","pages":"209-230"},"PeriodicalIF":1.7000,"publicationDate":"2023-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Coupling finite elements of class C1 on composite curved meshes for second order elliptic problems\",\"authors\":\"Ashish Bhole, Hervé Guillard, Boniface Nkonga, Francesca Rapetti\",\"doi\":\"10.1002/fld.5241\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>Finite elements of class <math>\\n <mrow>\\n <msup>\\n <mrow>\\n <mi>𝒞</mi>\\n </mrow>\\n <mrow>\\n <mn>1</mn>\\n </mrow>\\n </msup>\\n </mrow></math> are suitable for the computation of magnetohydrodynamics instabilities in tokamak plasmas. In addition, isoparametric approximations allow for a precise alignment of the mesh with the magnetic field line. Mesh alignment is crucial to achieve axisymmetric equilibria accurately. It is also helpful to deal with the anisotropy nature of magnetized plasma flows. In this numerical framework, several practical simulations are now available. They help to understand better the operation of existing devices and predict the optimal strategies for using the international ITER tokamak under construction. However, a mesh-aligned isoparametric representation suffers from the presence of critical points of the magnetic field (magnetic axis, X-point). We here explore a strategy that combines aligned mesh out of the critical points with non-aligned unstructured mesh in a region containing these points. By this strategy, we can avoid highly stretched elements and the numerical difficulties that come with them. The mesh-aligned interpolation uses bi-cubic Hemite-Bézier polynomials on a structured mesh of curved quadrangular elements. On the other hand, we assume reduced cubic Hsieh-Clough-Tocher finite elements on an unstructured triangular mesh. Both meshes overlap, and the resulting formulation is a coupled discrete problem solved iteratively by a suitable one-level Schwarz algorithm. In this paper, we will focus on the Poisson problem on a two-dimensional bounded regular domain. This elliptic equation is a simplified version of the axisymmetric tokamak equilibrium one at the asymptotic limit of infinite major radius (large aspect ratio).</p>\\n </div>\",\"PeriodicalId\":50348,\"journal\":{\"name\":\"International Journal for Numerical Methods in Fluids\",\"volume\":\"96 2\",\"pages\":\"209-230\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2023-10-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal for Numerical Methods in Fluids\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/fld.5241\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal for Numerical Methods in Fluids","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/fld.5241","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Coupling finite elements of class C1 on composite curved meshes for second order elliptic problems
Finite elements of class are suitable for the computation of magnetohydrodynamics instabilities in tokamak plasmas. In addition, isoparametric approximations allow for a precise alignment of the mesh with the magnetic field line. Mesh alignment is crucial to achieve axisymmetric equilibria accurately. It is also helpful to deal with the anisotropy nature of magnetized plasma flows. In this numerical framework, several practical simulations are now available. They help to understand better the operation of existing devices and predict the optimal strategies for using the international ITER tokamak under construction. However, a mesh-aligned isoparametric representation suffers from the presence of critical points of the magnetic field (magnetic axis, X-point). We here explore a strategy that combines aligned mesh out of the critical points with non-aligned unstructured mesh in a region containing these points. By this strategy, we can avoid highly stretched elements and the numerical difficulties that come with them. The mesh-aligned interpolation uses bi-cubic Hemite-Bézier polynomials on a structured mesh of curved quadrangular elements. On the other hand, we assume reduced cubic Hsieh-Clough-Tocher finite elements on an unstructured triangular mesh. Both meshes overlap, and the resulting formulation is a coupled discrete problem solved iteratively by a suitable one-level Schwarz algorithm. In this paper, we will focus on the Poisson problem on a two-dimensional bounded regular domain. This elliptic equation is a simplified version of the axisymmetric tokamak equilibrium one at the asymptotic limit of infinite major radius (large aspect ratio).
期刊介绍:
The International Journal for Numerical Methods in Fluids publishes refereed papers describing significant developments in computational methods that are applicable to scientific and engineering problems in fluid mechanics, fluid dynamics, micro and bio fluidics, and fluid-structure interaction. Numerical methods for solving ancillary equations, such as transport and advection and diffusion, are also relevant. The Editors encourage contributions in the areas of multi-physics, multi-disciplinary and multi-scale problems involving fluid subsystems, verification and validation, uncertainty quantification, and model reduction.
Numerical examples that illustrate the described methods or their accuracy are in general expected. Discussions of papers already in print are also considered. However, papers dealing strictly with applications of existing methods or dealing with areas of research that are not deemed to be cutting edge by the Editors will not be considered for review.
The journal publishes full-length papers, which should normally be less than 25 journal pages in length. Two-part papers are discouraged unless considered necessary by the Editors.