{"title":"基于语义特征增强的密集RFB-FE航空图像目标检测方法","authors":"Xinyang Li, Jingguo Zhang","doi":"10.4018/ijswis.331083","DOIUrl":null,"url":null,"abstract":"Aerial image target detection is a challenging task due to the complex backgrounds, dense target distribution, and large-scale differences often present in aerial images. Existing methods often struggle to effectively extract detailed features and address the issue of imbalanced positive and negative samples. To tackle these challenges, an aerial image target detection method (dense RFB-FE-CGAM) based on dense RFB-FE and channel-global attention mechanism (CGAM) was proposed. First, the authors design a shallow feature enhancement module using dense RFB feature multiplexing and expand convolution within an SSD network, improving detailed feature extraction. Second, they introduce CGAM, a global attention module, to enhance semantic feature extraction in backbone networks. Finally, they incorporate a focal loss function for joint training, addressing sample imbalance. In experiments, the method achieved an mAP of 0.755 on the DOTA dataset and recall/AP values of 0.889/0.906 on HRSC2016, confirming the effectiveness of dense RFB-FE-CGAM for aerial image target detection.","PeriodicalId":54934,"journal":{"name":"International Journal on Semantic Web and Information Systems","volume":"100 1","pages":"0"},"PeriodicalIF":4.1000,"publicationDate":"2023-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Semantic Feature Enhancement-Based Aerial Image Target Detection Method Using Dense RFB-FE\",\"authors\":\"Xinyang Li, Jingguo Zhang\",\"doi\":\"10.4018/ijswis.331083\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Aerial image target detection is a challenging task due to the complex backgrounds, dense target distribution, and large-scale differences often present in aerial images. Existing methods often struggle to effectively extract detailed features and address the issue of imbalanced positive and negative samples. To tackle these challenges, an aerial image target detection method (dense RFB-FE-CGAM) based on dense RFB-FE and channel-global attention mechanism (CGAM) was proposed. First, the authors design a shallow feature enhancement module using dense RFB feature multiplexing and expand convolution within an SSD network, improving detailed feature extraction. Second, they introduce CGAM, a global attention module, to enhance semantic feature extraction in backbone networks. Finally, they incorporate a focal loss function for joint training, addressing sample imbalance. In experiments, the method achieved an mAP of 0.755 on the DOTA dataset and recall/AP values of 0.889/0.906 on HRSC2016, confirming the effectiveness of dense RFB-FE-CGAM for aerial image target detection.\",\"PeriodicalId\":54934,\"journal\":{\"name\":\"International Journal on Semantic Web and Information Systems\",\"volume\":\"100 1\",\"pages\":\"0\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2023-09-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal on Semantic Web and Information Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/ijswis.331083\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal on Semantic Web and Information Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/ijswis.331083","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
A Semantic Feature Enhancement-Based Aerial Image Target Detection Method Using Dense RFB-FE
Aerial image target detection is a challenging task due to the complex backgrounds, dense target distribution, and large-scale differences often present in aerial images. Existing methods often struggle to effectively extract detailed features and address the issue of imbalanced positive and negative samples. To tackle these challenges, an aerial image target detection method (dense RFB-FE-CGAM) based on dense RFB-FE and channel-global attention mechanism (CGAM) was proposed. First, the authors design a shallow feature enhancement module using dense RFB feature multiplexing and expand convolution within an SSD network, improving detailed feature extraction. Second, they introduce CGAM, a global attention module, to enhance semantic feature extraction in backbone networks. Finally, they incorporate a focal loss function for joint training, addressing sample imbalance. In experiments, the method achieved an mAP of 0.755 on the DOTA dataset and recall/AP values of 0.889/0.906 on HRSC2016, confirming the effectiveness of dense RFB-FE-CGAM for aerial image target detection.
期刊介绍:
The International Journal on Semantic Web and Information Systems (IJSWIS) promotes a knowledge transfer channel where academics, practitioners, and researchers can discuss, analyze, criticize, synthesize, communicate, elaborate, and simplify the more-than-promising technology of the semantic Web in the context of information systems. The journal aims to establish value-adding knowledge transfer and personal development channels in three distinctive areas: academia, industry, and government.