异构金融网络聚类

IF 1.6 3区 经济学 Q3 BUSINESS, FINANCE
Hamed Amini, Yudong Chen, Andreea Minca, Xin Qian
{"title":"异构金融网络聚类","authors":"Hamed Amini,&nbsp;Yudong Chen,&nbsp;Andreea Minca,&nbsp;Xin Qian","doi":"10.1111/mafi.12407","DOIUrl":null,"url":null,"abstract":"<p>We develop a convex-optimization clustering algorithm for heterogeneous financial networks, in the presence of arbitrary or even adversarial outliers. In the stochastic block model with heterogeneity parameters, we penalize nodes whose degree exhibit unusual behavior beyond inlier heterogeneity. We prove that under mild conditions, this method achieves exact recovery of the underlying clusters. In absence of any assumption on outliers, they are shown not to hinder the clustering of the inliers. We test the performance of the algorithm on semi-synthetic heterogenous networks reconstructed to match aggregate data on the Korean financial sector. Our method allows for recovery of sub-sectors with significantly lower error rates compared to existing algorithms. For overlapping portfolio networks, we uncover a clustering structure supporting diversification effects in investment management.</p>","PeriodicalId":49867,"journal":{"name":"Mathematical Finance","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2023-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Clustering heterogeneous financial networks\",\"authors\":\"Hamed Amini,&nbsp;Yudong Chen,&nbsp;Andreea Minca,&nbsp;Xin Qian\",\"doi\":\"10.1111/mafi.12407\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We develop a convex-optimization clustering algorithm for heterogeneous financial networks, in the presence of arbitrary or even adversarial outliers. In the stochastic block model with heterogeneity parameters, we penalize nodes whose degree exhibit unusual behavior beyond inlier heterogeneity. We prove that under mild conditions, this method achieves exact recovery of the underlying clusters. In absence of any assumption on outliers, they are shown not to hinder the clustering of the inliers. We test the performance of the algorithm on semi-synthetic heterogenous networks reconstructed to match aggregate data on the Korean financial sector. Our method allows for recovery of sub-sectors with significantly lower error rates compared to existing algorithms. For overlapping portfolio networks, we uncover a clustering structure supporting diversification effects in investment management.</p>\",\"PeriodicalId\":49867,\"journal\":{\"name\":\"Mathematical Finance\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2023-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Finance\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/mafi.12407\",\"RegionNum\":3,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BUSINESS, FINANCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Finance","FirstCategoryId":"96","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/mafi.12407","RegionNum":3,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
引用次数: 0

摘要

我们开发了一种针对异构金融网络的凸优化聚类算法,该算法适用于存在任意甚至对抗性异常值的情况。在具有异质性参数的随机块模型中,我们对其程度表现出超出异常值异质性的异常行为的节点进行惩罚。我们证明,在温和的条件下,这种方法可以精确恢复底层聚类。在不对离群值做任何假设的情况下,离群值不会阻碍对离群值的聚类。我们在半合成异质网络上测试了该算法的性能,重建的网络与韩国金融行业的总体数据相匹配。与现有算法相比,我们的方法能以更低的错误率恢复子行业。对于重叠的投资组合网络,我们发现了一种支持投资管理中多样化效应的聚类结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Clustering heterogeneous financial networks

We develop a convex-optimization clustering algorithm for heterogeneous financial networks, in the presence of arbitrary or even adversarial outliers. In the stochastic block model with heterogeneity parameters, we penalize nodes whose degree exhibit unusual behavior beyond inlier heterogeneity. We prove that under mild conditions, this method achieves exact recovery of the underlying clusters. In absence of any assumption on outliers, they are shown not to hinder the clustering of the inliers. We test the performance of the algorithm on semi-synthetic heterogenous networks reconstructed to match aggregate data on the Korean financial sector. Our method allows for recovery of sub-sectors with significantly lower error rates compared to existing algorithms. For overlapping portfolio networks, we uncover a clustering structure supporting diversification effects in investment management.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mathematical Finance
Mathematical Finance 数学-数学跨学科应用
CiteScore
4.10
自引率
6.20%
发文量
27
审稿时长
>12 weeks
期刊介绍: Mathematical Finance seeks to publish original research articles focused on the development and application of novel mathematical and statistical methods for the analysis of financial problems. The journal welcomes contributions on new statistical methods for the analysis of financial problems. Empirical results will be appropriate to the extent that they illustrate a statistical technique, validate a model or provide insight into a financial problem. Papers whose main contribution rests on empirical results derived with standard approaches will not be considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信