{"title":"半离散SO(3)-超柱的协变积分量化","authors":"Jean-Pierre Gazeau, Romain Murenzi","doi":"10.3390/sym15112044","DOIUrl":null,"url":null,"abstract":"Covariant integral quantization with rotational SO(3) symmetry is established for quantum motion on this group manifold. It can also be applied to Gabor signal analysis on this group. The corresponding phase space takes the form of a discrete-continuous hypercylinder. The central tool for implementing this procedure is the Weyl–Gabor operator, a non-unitary operator that operates on the Hilbert space of square-integrable functions on SO(3). This operator serves as the counterpart to the unitary Weyl or displacement operator used in constructing standard Schrödinger–Glauber–Sudarshan coherent states. We unveil a diverse range of properties associated with the quantizations and their corresponding semi-classical phase-space portraits, which are derived from different weight functions on the considered discrete-continuous hypercylinder. Certain classes of these weight functions lead to families of coherent states. Moreover, our approach allows us to define a Wigner distribution, satisfying the standard marginality conditions, along with its related Wigner transform.","PeriodicalId":48874,"journal":{"name":"Symmetry-Basel","volume":" 6","pages":"0"},"PeriodicalIF":2.2000,"publicationDate":"2023-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Covariant Integral Quantization of the Semi-Discrete SO(3)-Hypercylinder\",\"authors\":\"Jean-Pierre Gazeau, Romain Murenzi\",\"doi\":\"10.3390/sym15112044\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Covariant integral quantization with rotational SO(3) symmetry is established for quantum motion on this group manifold. It can also be applied to Gabor signal analysis on this group. The corresponding phase space takes the form of a discrete-continuous hypercylinder. The central tool for implementing this procedure is the Weyl–Gabor operator, a non-unitary operator that operates on the Hilbert space of square-integrable functions on SO(3). This operator serves as the counterpart to the unitary Weyl or displacement operator used in constructing standard Schrödinger–Glauber–Sudarshan coherent states. We unveil a diverse range of properties associated with the quantizations and their corresponding semi-classical phase-space portraits, which are derived from different weight functions on the considered discrete-continuous hypercylinder. Certain classes of these weight functions lead to families of coherent states. Moreover, our approach allows us to define a Wigner distribution, satisfying the standard marginality conditions, along with its related Wigner transform.\",\"PeriodicalId\":48874,\"journal\":{\"name\":\"Symmetry-Basel\",\"volume\":\" 6\",\"pages\":\"0\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2023-11-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Symmetry-Basel\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/sym15112044\",\"RegionNum\":3,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Symmetry-Basel","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/sym15112044","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Covariant Integral Quantization of the Semi-Discrete SO(3)-Hypercylinder
Covariant integral quantization with rotational SO(3) symmetry is established for quantum motion on this group manifold. It can also be applied to Gabor signal analysis on this group. The corresponding phase space takes the form of a discrete-continuous hypercylinder. The central tool for implementing this procedure is the Weyl–Gabor operator, a non-unitary operator that operates on the Hilbert space of square-integrable functions on SO(3). This operator serves as the counterpart to the unitary Weyl or displacement operator used in constructing standard Schrödinger–Glauber–Sudarshan coherent states. We unveil a diverse range of properties associated with the quantizations and their corresponding semi-classical phase-space portraits, which are derived from different weight functions on the considered discrete-continuous hypercylinder. Certain classes of these weight functions lead to families of coherent states. Moreover, our approach allows us to define a Wigner distribution, satisfying the standard marginality conditions, along with its related Wigner transform.
期刊介绍:
Symmetry (ISSN 2073-8994), an international and interdisciplinary scientific journal, publishes reviews, regular research papers and short notes. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. There is no restriction on the length of the papers. Full experimental and/or methodical details must be provided, so that results can be reproduced.