{"title":"火灾中的饮用水:西北太平洋地区供水设施易受野火影响的情况","authors":"Patrick J. L. Robichaud, Julie C. Padowski","doi":"10.1111/1752-1688.13174","DOIUrl":null,"url":null,"abstract":"<p>Increased wildfire activity in the western United States can lead to detrimental cascading effects to water quality. After fires, burned areas may experience significant runoff-induced erosion and sediment transport into rivers and reservoirs, which could rapidly overwhelm existing drinking water treatment plants. This paper couples an assessment of wildfire risk with an evaluation of water utility preparedness to understand where key fire-related drinking water vulnerabilities exist. Wildfire risk assessments were constructed and expanded from a commonly used methodology co-developed between researchers and water managers (Edel et al., 2002), to understand drinking water impacts on water quality after wildfires. A water utility preparedness index was created for this study using publicly available information to contextualize how well utilities may be able to respond to water quality degradation after fires. Results indicate that 22% of utilities studied (10% of the population served) were underprepared for fire and 11% of watersheds used were at greater risk of wildfire (9% of the population served). However, nearly three-quarters of utilities (76% of the population served) showed a moderate risk of fire and some need for improved fire preparedness. Information developed here could provide a useful framework from which utility managers can better assess their likely wildfire risk and preparation plans.</p>","PeriodicalId":17234,"journal":{"name":"Journal of The American Water Resources Association","volume":"60 2","pages":"590-602"},"PeriodicalIF":2.6000,"publicationDate":"2023-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1752-1688.13174","citationCount":"0","resultStr":"{\"title\":\"Drinking water under fire: Water utilities' vulnerability to wildfires in the Pacific Northwest\",\"authors\":\"Patrick J. L. Robichaud, Julie C. Padowski\",\"doi\":\"10.1111/1752-1688.13174\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Increased wildfire activity in the western United States can lead to detrimental cascading effects to water quality. After fires, burned areas may experience significant runoff-induced erosion and sediment transport into rivers and reservoirs, which could rapidly overwhelm existing drinking water treatment plants. This paper couples an assessment of wildfire risk with an evaluation of water utility preparedness to understand where key fire-related drinking water vulnerabilities exist. Wildfire risk assessments were constructed and expanded from a commonly used methodology co-developed between researchers and water managers (Edel et al., 2002), to understand drinking water impacts on water quality after wildfires. A water utility preparedness index was created for this study using publicly available information to contextualize how well utilities may be able to respond to water quality degradation after fires. Results indicate that 22% of utilities studied (10% of the population served) were underprepared for fire and 11% of watersheds used were at greater risk of wildfire (9% of the population served). However, nearly three-quarters of utilities (76% of the population served) showed a moderate risk of fire and some need for improved fire preparedness. Information developed here could provide a useful framework from which utility managers can better assess their likely wildfire risk and preparation plans.</p>\",\"PeriodicalId\":17234,\"journal\":{\"name\":\"Journal of The American Water Resources Association\",\"volume\":\"60 2\",\"pages\":\"590-602\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2023-11-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1752-1688.13174\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of The American Water Resources Association\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/1752-1688.13174\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The American Water Resources Association","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/1752-1688.13174","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
Drinking water under fire: Water utilities' vulnerability to wildfires in the Pacific Northwest
Increased wildfire activity in the western United States can lead to detrimental cascading effects to water quality. After fires, burned areas may experience significant runoff-induced erosion and sediment transport into rivers and reservoirs, which could rapidly overwhelm existing drinking water treatment plants. This paper couples an assessment of wildfire risk with an evaluation of water utility preparedness to understand where key fire-related drinking water vulnerabilities exist. Wildfire risk assessments were constructed and expanded from a commonly used methodology co-developed between researchers and water managers (Edel et al., 2002), to understand drinking water impacts on water quality after wildfires. A water utility preparedness index was created for this study using publicly available information to contextualize how well utilities may be able to respond to water quality degradation after fires. Results indicate that 22% of utilities studied (10% of the population served) were underprepared for fire and 11% of watersheds used were at greater risk of wildfire (9% of the population served). However, nearly three-quarters of utilities (76% of the population served) showed a moderate risk of fire and some need for improved fire preparedness. Information developed here could provide a useful framework from which utility managers can better assess their likely wildfire risk and preparation plans.
期刊介绍:
JAWRA seeks to be the preeminent scholarly publication on multidisciplinary water resources issues. JAWRA papers present ideas derived from multiple disciplines woven together to give insight into a critical water issue, or are based primarily upon a single discipline with important applications to other disciplines. Papers often cover the topics of recent AWRA conferences such as riparian ecology, geographic information systems, adaptive management, and water policy.
JAWRA authors present work within their disciplinary fields to a broader audience. Our Associate Editors and reviewers reflect this diversity to ensure a knowledgeable and fair review of a broad range of topics. We particularly encourage submissions of papers which impart a ''take home message'' our readers can use.