Nowar E. Koning, Sergei M. Kuzenko, Emmanouil S. N. Raptakis
{"title":"四维$$ \\mathcal{N} $$扩展AdS超空间的嵌入形式","authors":"Nowar E. Koning, Sergei M. Kuzenko, Emmanouil S. N. Raptakis","doi":"10.1007/jhep11(2023)063","DOIUrl":null,"url":null,"abstract":"A bstract The supertwistor and bi-supertwistor formulations for $$ \\mathcal{N} $$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mi>N</mml:mi> </mml:math> -extended anti-de Sitter (AdS) superspace in four dimensions, $$ Ad{S}^{4\\mid 4\\mathcal{N}} $$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mi>Ad</mml:mi> <mml:msup> <mml:mi>S</mml:mi> <mml:mrow> <mml:mn>4</mml:mn> <mml:mo>∣</mml:mo> <mml:mn>4</mml:mn> <mml:mi>N</mml:mi> </mml:mrow> </mml:msup> </mml:math> , were derived two years ago in [1]. In the present paper, we introduce a novel realisation of the $$ \\mathcal{N} $$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mi>N</mml:mi> </mml:math> -extended AdS supergroup OSp( $$ \\mathcal{N} $$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mi>N</mml:mi> </mml:math> |4; ℝ ) and apply it to develop a coset construction for $$ {\\textrm{AdS}}^{4\\mid 4\\mathcal{N}} $$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:msup> <mml:mi>AdS</mml:mi> <mml:mrow> <mml:mn>4</mml:mn> <mml:mo>∣</mml:mo> <mml:mn>4</mml:mn> <mml:mi>N</mml:mi> </mml:mrow> </mml:msup> </mml:math> and the corresponding differential geometry. This realisation naturally leads to an atlas on $$ {\\textrm{AdS}}^{4\\mid 4\\mathcal{N}} $$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:msup> <mml:mi>AdS</mml:mi> <mml:mrow> <mml:mn>4</mml:mn> <mml:mo>∣</mml:mo> <mml:mn>4</mml:mn> <mml:mi>N</mml:mi> </mml:mrow> </mml:msup> </mml:math> (that is a generalisation of the stereographic projection for a sphere) that consists of two charts with chiral transition functions for $$ \\mathcal{N} $$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mi>N</mml:mi> </mml:math> > 0. A manifestly OSp( $$ \\mathcal{N} $$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mi>N</mml:mi> </mml:math> |4; ℝ ) invariant model for a superparticle in $$ {\\textrm{AdS}}^{4\\mid 4\\mathcal{N}} $$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:msup> <mml:mi>AdS</mml:mi> <mml:mrow> <mml:mn>4</mml:mn> <mml:mo>∣</mml:mo> <mml:mn>4</mml:mn> <mml:mi>N</mml:mi> </mml:mrow> </mml:msup> </mml:math> is proposed. Additionally, by employing a conformal superspace approach, we describe the most general conformally flat $$ \\mathcal{N} $$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mi>N</mml:mi> </mml:math> -extended supergeometry. This construction is then specialised to the case of $$ {\\textrm{AdS}}^{4\\mid 4\\mathcal{N}} $$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:msup> <mml:mi>AdS</mml:mi> <mml:mrow> <mml:mn>4</mml:mn> <mml:mo>∣</mml:mo> <mml:mn>4</mml:mn> <mml:mi>N</mml:mi> </mml:mrow> </mml:msup> </mml:math> .","PeriodicalId":48906,"journal":{"name":"Journal of High Energy Physics","volume":" 1015","pages":"0"},"PeriodicalIF":5.0000,"publicationDate":"2023-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Embedding formalism for $$ \\\\mathcal{N} $$-extended AdS superspace in four dimensions\",\"authors\":\"Nowar E. Koning, Sergei M. Kuzenko, Emmanouil S. N. Raptakis\",\"doi\":\"10.1007/jhep11(2023)063\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A bstract The supertwistor and bi-supertwistor formulations for $$ \\\\mathcal{N} $$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mi>N</mml:mi> </mml:math> -extended anti-de Sitter (AdS) superspace in four dimensions, $$ Ad{S}^{4\\\\mid 4\\\\mathcal{N}} $$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mi>Ad</mml:mi> <mml:msup> <mml:mi>S</mml:mi> <mml:mrow> <mml:mn>4</mml:mn> <mml:mo>∣</mml:mo> <mml:mn>4</mml:mn> <mml:mi>N</mml:mi> </mml:mrow> </mml:msup> </mml:math> , were derived two years ago in [1]. In the present paper, we introduce a novel realisation of the $$ \\\\mathcal{N} $$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mi>N</mml:mi> </mml:math> -extended AdS supergroup OSp( $$ \\\\mathcal{N} $$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mi>N</mml:mi> </mml:math> |4; ℝ ) and apply it to develop a coset construction for $$ {\\\\textrm{AdS}}^{4\\\\mid 4\\\\mathcal{N}} $$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:msup> <mml:mi>AdS</mml:mi> <mml:mrow> <mml:mn>4</mml:mn> <mml:mo>∣</mml:mo> <mml:mn>4</mml:mn> <mml:mi>N</mml:mi> </mml:mrow> </mml:msup> </mml:math> and the corresponding differential geometry. This realisation naturally leads to an atlas on $$ {\\\\textrm{AdS}}^{4\\\\mid 4\\\\mathcal{N}} $$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:msup> <mml:mi>AdS</mml:mi> <mml:mrow> <mml:mn>4</mml:mn> <mml:mo>∣</mml:mo> <mml:mn>4</mml:mn> <mml:mi>N</mml:mi> </mml:mrow> </mml:msup> </mml:math> (that is a generalisation of the stereographic projection for a sphere) that consists of two charts with chiral transition functions for $$ \\\\mathcal{N} $$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mi>N</mml:mi> </mml:math> > 0. A manifestly OSp( $$ \\\\mathcal{N} $$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mi>N</mml:mi> </mml:math> |4; ℝ ) invariant model for a superparticle in $$ {\\\\textrm{AdS}}^{4\\\\mid 4\\\\mathcal{N}} $$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:msup> <mml:mi>AdS</mml:mi> <mml:mrow> <mml:mn>4</mml:mn> <mml:mo>∣</mml:mo> <mml:mn>4</mml:mn> <mml:mi>N</mml:mi> </mml:mrow> </mml:msup> </mml:math> is proposed. Additionally, by employing a conformal superspace approach, we describe the most general conformally flat $$ \\\\mathcal{N} $$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mi>N</mml:mi> </mml:math> -extended supergeometry. This construction is then specialised to the case of $$ {\\\\textrm{AdS}}^{4\\\\mid 4\\\\mathcal{N}} $$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:msup> <mml:mi>AdS</mml:mi> <mml:mrow> <mml:mn>4</mml:mn> <mml:mo>∣</mml:mo> <mml:mn>4</mml:mn> <mml:mi>N</mml:mi> </mml:mrow> </mml:msup> </mml:math> .\",\"PeriodicalId\":48906,\"journal\":{\"name\":\"Journal of High Energy Physics\",\"volume\":\" 1015\",\"pages\":\"0\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2023-11-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of High Energy Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/jhep11(2023)063\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, PARTICLES & FIELDS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of High Energy Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/jhep11(2023)063","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, PARTICLES & FIELDS","Score":null,"Total":0}
Embedding formalism for $$ \mathcal{N} $$-extended AdS superspace in four dimensions
A bstract The supertwistor and bi-supertwistor formulations for $$ \mathcal{N} $$ N -extended anti-de Sitter (AdS) superspace in four dimensions, $$ Ad{S}^{4\mid 4\mathcal{N}} $$ AdS4∣4N , were derived two years ago in [1]. In the present paper, we introduce a novel realisation of the $$ \mathcal{N} $$ N -extended AdS supergroup OSp( $$ \mathcal{N} $$ N |4; ℝ ) and apply it to develop a coset construction for $$ {\textrm{AdS}}^{4\mid 4\mathcal{N}} $$ AdS4∣4N and the corresponding differential geometry. This realisation naturally leads to an atlas on $$ {\textrm{AdS}}^{4\mid 4\mathcal{N}} $$ AdS4∣4N (that is a generalisation of the stereographic projection for a sphere) that consists of two charts with chiral transition functions for $$ \mathcal{N} $$ N > 0. A manifestly OSp( $$ \mathcal{N} $$ N |4; ℝ ) invariant model for a superparticle in $$ {\textrm{AdS}}^{4\mid 4\mathcal{N}} $$ AdS4∣4N is proposed. Additionally, by employing a conformal superspace approach, we describe the most general conformally flat $$ \mathcal{N} $$ N -extended supergeometry. This construction is then specialised to the case of $$ {\textrm{AdS}}^{4\mid 4\mathcal{N}} $$ AdS4∣4N .
期刊介绍:
The aim of the Journal of High Energy Physics (JHEP) is to ensure fast and efficient online publication tools to the scientific community, while keeping that community in charge of every aspect of the peer-review and publication process in order to ensure the highest quality standards in the journal.
Consequently, the Advisory and Editorial Boards, composed of distinguished, active scientists in the field, jointly establish with the Scientific Director the journal''s scientific policy and ensure the scientific quality of accepted articles.
JHEP presently encompasses the following areas of theoretical and experimental physics:
Collider Physics
Underground and Large Array Physics
Quantum Field Theory
Gauge Field Theories
Symmetries
String and Brane Theory
General Relativity and Gravitation
Supersymmetry
Mathematical Methods of Physics
Mostly Solvable Models
Astroparticles
Statistical Field Theories
Mostly Weak Interactions
Mostly Strong Interactions
Quantum Field Theory (phenomenology)
Strings and Branes
Phenomenological Aspects of Supersymmetry
Mostly Strong Interactions (phenomenology).