四维$$ \mathcal{N} $$扩展AdS超空间的嵌入形式

IF 5 1区 物理与天体物理 Q1 PHYSICS, PARTICLES & FIELDS
Nowar E. Koning, Sergei M. Kuzenko, Emmanouil S. N. Raptakis
{"title":"四维$$ \\mathcal{N} $$扩展AdS超空间的嵌入形式","authors":"Nowar E. Koning, Sergei M. Kuzenko, Emmanouil S. N. Raptakis","doi":"10.1007/jhep11(2023)063","DOIUrl":null,"url":null,"abstract":"A bstract The supertwistor and bi-supertwistor formulations for $$ \\mathcal{N} $$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mi>N</mml:mi> </mml:math> -extended anti-de Sitter (AdS) superspace in four dimensions, $$ Ad{S}^{4\\mid 4\\mathcal{N}} $$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mi>Ad</mml:mi> <mml:msup> <mml:mi>S</mml:mi> <mml:mrow> <mml:mn>4</mml:mn> <mml:mo>∣</mml:mo> <mml:mn>4</mml:mn> <mml:mi>N</mml:mi> </mml:mrow> </mml:msup> </mml:math> , were derived two years ago in [1]. In the present paper, we introduce a novel realisation of the $$ \\mathcal{N} $$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mi>N</mml:mi> </mml:math> -extended AdS supergroup OSp( $$ \\mathcal{N} $$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mi>N</mml:mi> </mml:math> |4; ℝ ) and apply it to develop a coset construction for $$ {\\textrm{AdS}}^{4\\mid 4\\mathcal{N}} $$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:msup> <mml:mi>AdS</mml:mi> <mml:mrow> <mml:mn>4</mml:mn> <mml:mo>∣</mml:mo> <mml:mn>4</mml:mn> <mml:mi>N</mml:mi> </mml:mrow> </mml:msup> </mml:math> and the corresponding differential geometry. This realisation naturally leads to an atlas on $$ {\\textrm{AdS}}^{4\\mid 4\\mathcal{N}} $$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:msup> <mml:mi>AdS</mml:mi> <mml:mrow> <mml:mn>4</mml:mn> <mml:mo>∣</mml:mo> <mml:mn>4</mml:mn> <mml:mi>N</mml:mi> </mml:mrow> </mml:msup> </mml:math> (that is a generalisation of the stereographic projection for a sphere) that consists of two charts with chiral transition functions for $$ \\mathcal{N} $$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mi>N</mml:mi> </mml:math> &gt; 0. A manifestly OSp( $$ \\mathcal{N} $$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mi>N</mml:mi> </mml:math> |4; ℝ ) invariant model for a superparticle in $$ {\\textrm{AdS}}^{4\\mid 4\\mathcal{N}} $$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:msup> <mml:mi>AdS</mml:mi> <mml:mrow> <mml:mn>4</mml:mn> <mml:mo>∣</mml:mo> <mml:mn>4</mml:mn> <mml:mi>N</mml:mi> </mml:mrow> </mml:msup> </mml:math> is proposed. Additionally, by employing a conformal superspace approach, we describe the most general conformally flat $$ \\mathcal{N} $$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mi>N</mml:mi> </mml:math> -extended supergeometry. This construction is then specialised to the case of $$ {\\textrm{AdS}}^{4\\mid 4\\mathcal{N}} $$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:msup> <mml:mi>AdS</mml:mi> <mml:mrow> <mml:mn>4</mml:mn> <mml:mo>∣</mml:mo> <mml:mn>4</mml:mn> <mml:mi>N</mml:mi> </mml:mrow> </mml:msup> </mml:math> .","PeriodicalId":48906,"journal":{"name":"Journal of High Energy Physics","volume":" 1015","pages":"0"},"PeriodicalIF":5.0000,"publicationDate":"2023-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Embedding formalism for $$ \\\\mathcal{N} $$-extended AdS superspace in four dimensions\",\"authors\":\"Nowar E. Koning, Sergei M. Kuzenko, Emmanouil S. N. Raptakis\",\"doi\":\"10.1007/jhep11(2023)063\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A bstract The supertwistor and bi-supertwistor formulations for $$ \\\\mathcal{N} $$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mi>N</mml:mi> </mml:math> -extended anti-de Sitter (AdS) superspace in four dimensions, $$ Ad{S}^{4\\\\mid 4\\\\mathcal{N}} $$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mi>Ad</mml:mi> <mml:msup> <mml:mi>S</mml:mi> <mml:mrow> <mml:mn>4</mml:mn> <mml:mo>∣</mml:mo> <mml:mn>4</mml:mn> <mml:mi>N</mml:mi> </mml:mrow> </mml:msup> </mml:math> , were derived two years ago in [1]. In the present paper, we introduce a novel realisation of the $$ \\\\mathcal{N} $$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mi>N</mml:mi> </mml:math> -extended AdS supergroup OSp( $$ \\\\mathcal{N} $$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mi>N</mml:mi> </mml:math> |4; ℝ ) and apply it to develop a coset construction for $$ {\\\\textrm{AdS}}^{4\\\\mid 4\\\\mathcal{N}} $$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:msup> <mml:mi>AdS</mml:mi> <mml:mrow> <mml:mn>4</mml:mn> <mml:mo>∣</mml:mo> <mml:mn>4</mml:mn> <mml:mi>N</mml:mi> </mml:mrow> </mml:msup> </mml:math> and the corresponding differential geometry. This realisation naturally leads to an atlas on $$ {\\\\textrm{AdS}}^{4\\\\mid 4\\\\mathcal{N}} $$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:msup> <mml:mi>AdS</mml:mi> <mml:mrow> <mml:mn>4</mml:mn> <mml:mo>∣</mml:mo> <mml:mn>4</mml:mn> <mml:mi>N</mml:mi> </mml:mrow> </mml:msup> </mml:math> (that is a generalisation of the stereographic projection for a sphere) that consists of two charts with chiral transition functions for $$ \\\\mathcal{N} $$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mi>N</mml:mi> </mml:math> &gt; 0. A manifestly OSp( $$ \\\\mathcal{N} $$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mi>N</mml:mi> </mml:math> |4; ℝ ) invariant model for a superparticle in $$ {\\\\textrm{AdS}}^{4\\\\mid 4\\\\mathcal{N}} $$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:msup> <mml:mi>AdS</mml:mi> <mml:mrow> <mml:mn>4</mml:mn> <mml:mo>∣</mml:mo> <mml:mn>4</mml:mn> <mml:mi>N</mml:mi> </mml:mrow> </mml:msup> </mml:math> is proposed. Additionally, by employing a conformal superspace approach, we describe the most general conformally flat $$ \\\\mathcal{N} $$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mi>N</mml:mi> </mml:math> -extended supergeometry. This construction is then specialised to the case of $$ {\\\\textrm{AdS}}^{4\\\\mid 4\\\\mathcal{N}} $$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:msup> <mml:mi>AdS</mml:mi> <mml:mrow> <mml:mn>4</mml:mn> <mml:mo>∣</mml:mo> <mml:mn>4</mml:mn> <mml:mi>N</mml:mi> </mml:mrow> </mml:msup> </mml:math> .\",\"PeriodicalId\":48906,\"journal\":{\"name\":\"Journal of High Energy Physics\",\"volume\":\" 1015\",\"pages\":\"0\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2023-11-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of High Energy Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/jhep11(2023)063\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, PARTICLES & FIELDS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of High Energy Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/jhep11(2023)063","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, PARTICLES & FIELDS","Score":null,"Total":0}
引用次数: 0

摘要

在两年前的文献[1]中,推导出了四维中$$ \mathcal{N} $$ N扩展反德西特(AdS)超空间($$ Ad{S}^{4\mid 4\mathcal{N}} $$ Ad s4∣4n)的超扭转和双超扭转公式。在本文中,我们介绍了$$ \mathcal{N} $$ N扩展AdS超群OSp($$ \mathcal{N} $$ N |4;,并应用它来建立$$ {\textrm{AdS}}^{4\mid 4\mathcal{N}} $$ AdS 4∣4n的协集构造和相应的微分几何。这种认识自然导致了$$ {\textrm{AdS}}^{4\mid 4\mathcal{N}} $$ AdS 4∣4 N上的地图集(这是球体的立体投影的推广),它由两个具有$$ \mathcal{N} $$ N &gt的手性过渡函数的图组成;0. 一个明显的OSp($$ \mathcal{N} $$ N |4;给出了$$ {\textrm{AdS}}^{4\mid 4\mathcal{N}} $$ AdS 4∣4n中超粒子的一个不变量模型。此外,通过采用共形超空间方法,我们描述了最一般的共形平面$$ \mathcal{N} $$ N扩展超几何。这种结构然后专门用于$$ {\textrm{AdS}}^{4\mid 4\mathcal{N}} $$ AdS 4∣4 N的情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Embedding formalism for $$ \mathcal{N} $$-extended AdS superspace in four dimensions
A bstract The supertwistor and bi-supertwistor formulations for $$ \mathcal{N} $$ N -extended anti-de Sitter (AdS) superspace in four dimensions, $$ Ad{S}^{4\mid 4\mathcal{N}} $$ Ad S 4 4 N , were derived two years ago in [1]. In the present paper, we introduce a novel realisation of the $$ \mathcal{N} $$ N -extended AdS supergroup OSp( $$ \mathcal{N} $$ N |4; ℝ ) and apply it to develop a coset construction for $$ {\textrm{AdS}}^{4\mid 4\mathcal{N}} $$ AdS 4 4 N and the corresponding differential geometry. This realisation naturally leads to an atlas on $$ {\textrm{AdS}}^{4\mid 4\mathcal{N}} $$ AdS 4 4 N (that is a generalisation of the stereographic projection for a sphere) that consists of two charts with chiral transition functions for $$ \mathcal{N} $$ N > 0. A manifestly OSp( $$ \mathcal{N} $$ N |4; ℝ ) invariant model for a superparticle in $$ {\textrm{AdS}}^{4\mid 4\mathcal{N}} $$ AdS 4 4 N is proposed. Additionally, by employing a conformal superspace approach, we describe the most general conformally flat $$ \mathcal{N} $$ N -extended supergeometry. This construction is then specialised to the case of $$ {\textrm{AdS}}^{4\mid 4\mathcal{N}} $$ AdS 4 4 N .
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of High Energy Physics
Journal of High Energy Physics PHYSICS, PARTICLES & FIELDS-
CiteScore
10.00
自引率
46.30%
发文量
2107
审稿时长
12 weeks
期刊介绍: The aim of the Journal of High Energy Physics (JHEP) is to ensure fast and efficient online publication tools to the scientific community, while keeping that community in charge of every aspect of the peer-review and publication process in order to ensure the highest quality standards in the journal. Consequently, the Advisory and Editorial Boards, composed of distinguished, active scientists in the field, jointly establish with the Scientific Director the journal''s scientific policy and ensure the scientific quality of accepted articles. JHEP presently encompasses the following areas of theoretical and experimental physics: Collider Physics Underground and Large Array Physics Quantum Field Theory Gauge Field Theories Symmetries String and Brane Theory General Relativity and Gravitation Supersymmetry Mathematical Methods of Physics Mostly Solvable Models Astroparticles Statistical Field Theories Mostly Weak Interactions Mostly Strong Interactions Quantum Field Theory (phenomenology) Strings and Branes Phenomenological Aspects of Supersymmetry Mostly Strong Interactions (phenomenology).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信