均值移位和方差变化的组合检验

IF 2.2 3区 综合性期刊 Q2 MULTIDISCIPLINARY SCIENCES
Symmetry-Basel Pub Date : 2023-10-25 DOI:10.3390/sym15111975
Min Gao, Xiaoping Shi, Xuejun Wang, Wenzhi Yang
{"title":"均值移位和方差变化的组合检验","authors":"Min Gao, Xiaoping Shi, Xuejun Wang, Wenzhi Yang","doi":"10.3390/sym15111975","DOIUrl":null,"url":null,"abstract":"This paper considers a new mean-variance model with strong mixing errors and describes a combination test for the mean shift and variance change. Under some stationarity and symmetry conditions, the important limiting distribution for a combination test is obtained, which can derive the limiting distributions for the mean change test and variance change test. As an application, an algorithm for a three-step method to detect the change-points is given. For example, the first step is to test whether there is at least a change-point. The second and third steps are to detect the mean change-point and the variance change-point, respectively. To illustrate our results, some simulations and real-world data analysis are discussed. The analysis shows that our tests not only have high powers, but can also determine the mean change-point or variance change-point. Compared to the existing methods of cpt.meanvar and mosum from the R package, the new method has the advantages of recognition capability and accuracy.","PeriodicalId":48874,"journal":{"name":"Symmetry-Basel","volume":"48 9","pages":"0"},"PeriodicalIF":2.2000,"publicationDate":"2023-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Combination Test for Mean Shift and Variance Change\",\"authors\":\"Min Gao, Xiaoping Shi, Xuejun Wang, Wenzhi Yang\",\"doi\":\"10.3390/sym15111975\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper considers a new mean-variance model with strong mixing errors and describes a combination test for the mean shift and variance change. Under some stationarity and symmetry conditions, the important limiting distribution for a combination test is obtained, which can derive the limiting distributions for the mean change test and variance change test. As an application, an algorithm for a three-step method to detect the change-points is given. For example, the first step is to test whether there is at least a change-point. The second and third steps are to detect the mean change-point and the variance change-point, respectively. To illustrate our results, some simulations and real-world data analysis are discussed. The analysis shows that our tests not only have high powers, but can also determine the mean change-point or variance change-point. Compared to the existing methods of cpt.meanvar and mosum from the R package, the new method has the advantages of recognition capability and accuracy.\",\"PeriodicalId\":48874,\"journal\":{\"name\":\"Symmetry-Basel\",\"volume\":\"48 9\",\"pages\":\"0\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2023-10-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Symmetry-Basel\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/sym15111975\",\"RegionNum\":3,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Symmetry-Basel","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/sym15111975","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

本文考虑了一种新的强混合误差均值-方差模型,并给出了均值移位和方差变化的组合检验方法。在一定的平稳性和对称性条件下,得到了组合检验的重要极限分布,从而导出了均值变化检验和方差变化检验的极限分布。作为应用,给出了一种三步法检测变化点的算法。例如,第一步是测试是否至少存在一个变更点。第二步和第三步分别检测均值变化点和方差变化点。为了说明我们的结果,讨论了一些模拟和实际数据分析。分析表明,我们的测试不仅具有较高的功率,而且可以确定平均变化点或方差变化点。与现有的cpt方法相比。基于R包的均值和最小值,该方法具有识别能力强、精度高的优点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Combination Test for Mean Shift and Variance Change
This paper considers a new mean-variance model with strong mixing errors and describes a combination test for the mean shift and variance change. Under some stationarity and symmetry conditions, the important limiting distribution for a combination test is obtained, which can derive the limiting distributions for the mean change test and variance change test. As an application, an algorithm for a three-step method to detect the change-points is given. For example, the first step is to test whether there is at least a change-point. The second and third steps are to detect the mean change-point and the variance change-point, respectively. To illustrate our results, some simulations and real-world data analysis are discussed. The analysis shows that our tests not only have high powers, but can also determine the mean change-point or variance change-point. Compared to the existing methods of cpt.meanvar and mosum from the R package, the new method has the advantages of recognition capability and accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Symmetry-Basel
Symmetry-Basel MULTIDISCIPLINARY SCIENCES-
CiteScore
5.40
自引率
11.10%
发文量
2276
审稿时长
14.88 days
期刊介绍: Symmetry (ISSN 2073-8994), an international and interdisciplinary scientific journal, publishes reviews, regular research papers and short notes. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. There is no restriction on the length of the papers. Full experimental and/or methodical details must be provided, so that results can be reproduced.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信