体外加速度作用下多狭窄倾斜动脉内Rabinowitsch流体脉动流动分析

IF 2.6 4区 物理与天体物理 Q2 PHYSICS, APPLIED
Salman Akhtar, Muhammad Naveed Khan, Mohamed Sharaf
{"title":"体外加速度作用下多狭窄倾斜动脉内Rabinowitsch流体脉动流动分析","authors":"Salman Akhtar, Muhammad Naveed Khan, Mohamed Sharaf","doi":"10.1142/s0217979224503922","DOIUrl":null,"url":null,"abstract":"The stenosis builds up and its progression in the artery causes serious damages, which may lead to death. This research aims to investigate the non-Newtonian properties of the pulsatile blood flow through the multi-stenotic inclined artery. The effect of external body acceleration is considered, and blood is taken as Rabinowitsch fluid in this work. The mathematical model representing the proposed problem is transformed into a dimensionless form by applying the assumption for mild stenosis. The dimensionless mathematical equations are solved using the perturbation method. The solutions of mathematical equations are investigated graphically to analyze the impacts of various physical constraints. We find that strong non-Newtonian effects lead to an increase in flow velocity and wall shear stress. The stenosis’s presence and progression in the artery reduces the flow velocity. The stenotic artery (diseased artery) is found to have less flow rate than the healthy artery. It is noted that the vertically held conduit effectively has a larger flow velocity and wall shear stress than the horizontal one. External body acceleration is noted to have an impact that raises velocity and wall shear stress.","PeriodicalId":14108,"journal":{"name":"International Journal of Modern Physics B","volume":"30 1","pages":"0"},"PeriodicalIF":2.6000,"publicationDate":"2023-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analysis of pulsatile flow of Rabinowitsch fluid in the multi-stenosed inclined artery under the influence of external body acceleration\",\"authors\":\"Salman Akhtar, Muhammad Naveed Khan, Mohamed Sharaf\",\"doi\":\"10.1142/s0217979224503922\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The stenosis builds up and its progression in the artery causes serious damages, which may lead to death. This research aims to investigate the non-Newtonian properties of the pulsatile blood flow through the multi-stenotic inclined artery. The effect of external body acceleration is considered, and blood is taken as Rabinowitsch fluid in this work. The mathematical model representing the proposed problem is transformed into a dimensionless form by applying the assumption for mild stenosis. The dimensionless mathematical equations are solved using the perturbation method. The solutions of mathematical equations are investigated graphically to analyze the impacts of various physical constraints. We find that strong non-Newtonian effects lead to an increase in flow velocity and wall shear stress. The stenosis’s presence and progression in the artery reduces the flow velocity. The stenotic artery (diseased artery) is found to have less flow rate than the healthy artery. It is noted that the vertically held conduit effectively has a larger flow velocity and wall shear stress than the horizontal one. External body acceleration is noted to have an impact that raises velocity and wall shear stress.\",\"PeriodicalId\":14108,\"journal\":{\"name\":\"International Journal of Modern Physics B\",\"volume\":\"30 1\",\"pages\":\"0\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2023-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Modern Physics B\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/s0217979224503922\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Modern Physics B","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0217979224503922","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

血管狭窄逐渐加重,并在动脉中发展,造成严重损害,甚至可能导致死亡。本研究旨在探讨多狭窄倾斜动脉搏动血流的非牛顿特性。本文考虑了体外加速度的影响,将血液作为拉宾诺维奇液。采用轻度狭窄的假设,将表示该问题的数学模型转化为无因次形式。用摄动法求解了无量纲数学方程。对数学方程的解进行了图解研究,以分析各种物理约束的影响。我们发现强烈的非牛顿效应导致流速和壁面剪应力的增加。动脉狭窄的存在和进展降低了血流速度。狭窄动脉(病变动脉)的流速小于健康动脉。结果表明,垂直持管比水平持管具有更大的流速和壁面剪应力。外界物体加速度被注意到有提高速度和壁面剪切应力的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Analysis of pulsatile flow of Rabinowitsch fluid in the multi-stenosed inclined artery under the influence of external body acceleration
The stenosis builds up and its progression in the artery causes serious damages, which may lead to death. This research aims to investigate the non-Newtonian properties of the pulsatile blood flow through the multi-stenotic inclined artery. The effect of external body acceleration is considered, and blood is taken as Rabinowitsch fluid in this work. The mathematical model representing the proposed problem is transformed into a dimensionless form by applying the assumption for mild stenosis. The dimensionless mathematical equations are solved using the perturbation method. The solutions of mathematical equations are investigated graphically to analyze the impacts of various physical constraints. We find that strong non-Newtonian effects lead to an increase in flow velocity and wall shear stress. The stenosis’s presence and progression in the artery reduces the flow velocity. The stenotic artery (diseased artery) is found to have less flow rate than the healthy artery. It is noted that the vertically held conduit effectively has a larger flow velocity and wall shear stress than the horizontal one. External body acceleration is noted to have an impact that raises velocity and wall shear stress.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Modern Physics B
International Journal of Modern Physics B 物理-物理:凝聚态物理
CiteScore
3.70
自引率
11.80%
发文量
417
审稿时长
3.1 months
期刊介绍: Launched in 1987, the International Journal of Modern Physics B covers the most important aspects and the latest developments in Condensed Matter Physics, Statistical Physics, as well as Atomic, Molecular and Optical Physics. A strong emphasis is placed on topics of current interest, such as cold atoms and molecules, new topological materials and phases, and novel low dimensional materials. One unique feature of this journal is its review section which contains articles with permanent research value besides the state-of-the-art research work in the relevant subject areas.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信