{"title":"原子层沉积氮化锌 (ZnON) 过程中的表面化学反应","authors":"Tran Thi Ngoc Van, Bonggeun Shong","doi":"10.1007/s13391-023-00467-8","DOIUrl":null,"url":null,"abstract":"<div><p>Atomic layer deposition (ALD) is a promising technique for fabricating high-quality thin films. For improving the process conditions and material quality of ALD, understanding the surface chemical mechanisms at the molecular level is important as the entire ALD process is based on the reactions of precursors on the substrate surfaces. Zinc oxynitride (ZnON) is gaining significant research interest as a<i> p</i>-type semiconductor material. Although the ALD of ZnON can be performed by dosing H<sub>2</sub>O and NH<sub>3</sub> as oxygen and nitrogen sources, respectively, the elemental ratio of O and N in the deposited film differs considerably from that in the gaseous sources. In this study, the surface reactions of ZnON ALD are analyzed employing density functional theory calculations. All the ALD surface reactions of ZnO and ZnN are facile and expected to occur rapidly. However, the substitution of a surface *NH<sub>2</sub> by H<sub>2</sub>O to form *OH is preferred, whereas the inverse reaction is implausible. We propose that the differences in the reactivity could originate from the higher bond energy of Zn–O than that of Zn–N.</p><h3>Graphical Abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":536,"journal":{"name":"Electronic Materials Letters","volume":"20 4","pages":"500 - 507"},"PeriodicalIF":2.1000,"publicationDate":"2023-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Surface Chemical Reactions During Atomic Layer Deposition of Zinc Oxynitride (ZnON)\",\"authors\":\"Tran Thi Ngoc Van, Bonggeun Shong\",\"doi\":\"10.1007/s13391-023-00467-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Atomic layer deposition (ALD) is a promising technique for fabricating high-quality thin films. For improving the process conditions and material quality of ALD, understanding the surface chemical mechanisms at the molecular level is important as the entire ALD process is based on the reactions of precursors on the substrate surfaces. Zinc oxynitride (ZnON) is gaining significant research interest as a<i> p</i>-type semiconductor material. Although the ALD of ZnON can be performed by dosing H<sub>2</sub>O and NH<sub>3</sub> as oxygen and nitrogen sources, respectively, the elemental ratio of O and N in the deposited film differs considerably from that in the gaseous sources. In this study, the surface reactions of ZnON ALD are analyzed employing density functional theory calculations. All the ALD surface reactions of ZnO and ZnN are facile and expected to occur rapidly. However, the substitution of a surface *NH<sub>2</sub> by H<sub>2</sub>O to form *OH is preferred, whereas the inverse reaction is implausible. We propose that the differences in the reactivity could originate from the higher bond energy of Zn–O than that of Zn–N.</p><h3>Graphical Abstract</h3>\\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":536,\"journal\":{\"name\":\"Electronic Materials Letters\",\"volume\":\"20 4\",\"pages\":\"500 - 507\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2023-11-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electronic Materials Letters\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s13391-023-00467-8\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Materials Letters","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s13391-023-00467-8","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Surface Chemical Reactions During Atomic Layer Deposition of Zinc Oxynitride (ZnON)
Atomic layer deposition (ALD) is a promising technique for fabricating high-quality thin films. For improving the process conditions and material quality of ALD, understanding the surface chemical mechanisms at the molecular level is important as the entire ALD process is based on the reactions of precursors on the substrate surfaces. Zinc oxynitride (ZnON) is gaining significant research interest as a p-type semiconductor material. Although the ALD of ZnON can be performed by dosing H2O and NH3 as oxygen and nitrogen sources, respectively, the elemental ratio of O and N in the deposited film differs considerably from that in the gaseous sources. In this study, the surface reactions of ZnON ALD are analyzed employing density functional theory calculations. All the ALD surface reactions of ZnO and ZnN are facile and expected to occur rapidly. However, the substitution of a surface *NH2 by H2O to form *OH is preferred, whereas the inverse reaction is implausible. We propose that the differences in the reactivity could originate from the higher bond energy of Zn–O than that of Zn–N.
期刊介绍:
Electronic Materials Letters is an official journal of the Korean Institute of Metals and Materials. It is a peer-reviewed international journal publishing print and online version. It covers all disciplines of research and technology in electronic materials. Emphasis is placed on science, engineering and applications of advanced materials, including electronic, magnetic, optical, organic, electrochemical, mechanical, and nanoscale materials. The aspects of synthesis and processing include thin films, nanostructures, self assembly, and bulk, all related to thermodynamics, kinetics and/or modeling.