Praveen Anchupogu, R L Krupakaran, Jamuna Rani Ganipineni, Ratna Kamala Petla
{"title":"“使用Al <sub>2</sub>的直驱柴油机性能排放参数行为”;O & lt; sub> 3 & lt; / sub>2</sub>纳米添加剂生物柴油混合物”","authors":"Praveen Anchupogu, R L Krupakaran, Jamuna Rani Ganipineni, Ratna Kamala Petla","doi":"10.4271/2023-28-0127","DOIUrl":null,"url":null,"abstract":"<div class=\"section abstract\"><div class=\"htmlview paragraph\">This study mainly focuses on the blending of Alumina and Titanium oxide nanoparticles (NP’s) in Spirulina biodiesel blends (SB20) to estimate the influence of engine (combustion, performance and emission) parameters of a diesel engine. The characterization of Al<sub>2</sub>O<sub>3</sub> and TiO<sub>2</sub> NP’s like SEM were reported. By using various fuel samples such as Diesel, SB20, SB20+40 ppm AO, SB20+80 ppm AO, SB20+40 ppm TO and SB20+80 ppm TO, the engine tests on the diesel engine were conducted at various load conditions. The BTE for SB20+80 ppm AO were enhanced by 12.35% and 8.4 % compared to the SB20 fuel and SB20+40 ppm AO fuel samples. The combustion parameters were improved for the NP’s as additives (Al<sub>2</sub>O<sub>3</sub> and TiO<sub>2</sub>) fuels than the SB20 fuel sample because NP’s contain oxygen content. The parameters of engine exhaust emissions such as HC, CO and smoke are drastically diminished for the SB20+40 ppm AO, SB20+80 ppm AO, SB20+40 ppm TO and SB20+80 ppm TO fuels compared to the SB20 fuel. A marginal improvement was observed for the NP’s blended fuel samples in case of NOx emissions than the B20 fuel.</div></div>","PeriodicalId":38377,"journal":{"name":"SAE Technical Papers","volume":" 5","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"“Performance Emission Parameters Behavior of a DI Diesel Engine Using Al <sub>2</sub> O <sub>3</sub> and TiO <sub>2</sub> Nano Additive Biodiesel Blends”\",\"authors\":\"Praveen Anchupogu, R L Krupakaran, Jamuna Rani Ganipineni, Ratna Kamala Petla\",\"doi\":\"10.4271/2023-28-0127\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div class=\\\"section abstract\\\"><div class=\\\"htmlview paragraph\\\">This study mainly focuses on the blending of Alumina and Titanium oxide nanoparticles (NP’s) in Spirulina biodiesel blends (SB20) to estimate the influence of engine (combustion, performance and emission) parameters of a diesel engine. The characterization of Al<sub>2</sub>O<sub>3</sub> and TiO<sub>2</sub> NP’s like SEM were reported. By using various fuel samples such as Diesel, SB20, SB20+40 ppm AO, SB20+80 ppm AO, SB20+40 ppm TO and SB20+80 ppm TO, the engine tests on the diesel engine were conducted at various load conditions. The BTE for SB20+80 ppm AO were enhanced by 12.35% and 8.4 % compared to the SB20 fuel and SB20+40 ppm AO fuel samples. The combustion parameters were improved for the NP’s as additives (Al<sub>2</sub>O<sub>3</sub> and TiO<sub>2</sub>) fuels than the SB20 fuel sample because NP’s contain oxygen content. The parameters of engine exhaust emissions such as HC, CO and smoke are drastically diminished for the SB20+40 ppm AO, SB20+80 ppm AO, SB20+40 ppm TO and SB20+80 ppm TO fuels compared to the SB20 fuel. A marginal improvement was observed for the NP’s blended fuel samples in case of NOx emissions than the B20 fuel.</div></div>\",\"PeriodicalId\":38377,\"journal\":{\"name\":\"SAE Technical Papers\",\"volume\":\" 5\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-11-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SAE Technical Papers\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4271/2023-28-0127\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SAE Technical Papers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4271/2023-28-0127","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
“Performance Emission Parameters Behavior of a DI Diesel Engine Using Al <sub>2</sub> O <sub>3</sub> and TiO <sub>2</sub> Nano Additive Biodiesel Blends”
This study mainly focuses on the blending of Alumina and Titanium oxide nanoparticles (NP’s) in Spirulina biodiesel blends (SB20) to estimate the influence of engine (combustion, performance and emission) parameters of a diesel engine. The characterization of Al2O3 and TiO2 NP’s like SEM were reported. By using various fuel samples such as Diesel, SB20, SB20+40 ppm AO, SB20+80 ppm AO, SB20+40 ppm TO and SB20+80 ppm TO, the engine tests on the diesel engine were conducted at various load conditions. The BTE for SB20+80 ppm AO were enhanced by 12.35% and 8.4 % compared to the SB20 fuel and SB20+40 ppm AO fuel samples. The combustion parameters were improved for the NP’s as additives (Al2O3 and TiO2) fuels than the SB20 fuel sample because NP’s contain oxygen content. The parameters of engine exhaust emissions such as HC, CO and smoke are drastically diminished for the SB20+40 ppm AO, SB20+80 ppm AO, SB20+40 ppm TO and SB20+80 ppm TO fuels compared to the SB20 fuel. A marginal improvement was observed for the NP’s blended fuel samples in case of NOx emissions than the B20 fuel.
期刊介绍:
SAE Technical Papers are written and peer-reviewed by experts in the automotive, aerospace, and commercial vehicle industries. Browse the more than 102,000 technical papers and journal articles on the latest advances in technical research and applied technical engineering information below.