Ahmed Sunjaq, Peiyuan Chen, Massimo Bongiorno, Ritwik Majumder, Jan R. Svensson
{"title":"利用 BESS 进行频率控制,实现水力发电微电网的平稳岛过渡","authors":"Ahmed Sunjaq, Peiyuan Chen, Massimo Bongiorno, Ritwik Majumder, Jan R. Svensson","doi":"10.1049/stg2.12140","DOIUrl":null,"url":null,"abstract":"<p>This paper develops a frequency control strategy for a battery energy storage system to facilitate the smooth island transition of a hydro-powered microgrid during unplanned grid outages. The proposed frequency control strategy uses a PI-based droop controller, where the tuning of the controller accounts for the limitations in the power response of a hydro generator and the required frequency quality of the microgrid. The effectiveness of the frequency control strategy is verified in Simulink using phasor simulations, and it is further validated in laboratory tests. The results demonstrate that the proposed PI-based droop and its tuning strategy fulfill the desired frequency quality requirement of the hydro-powered microgrid without over-dimensioning the size of the storage capacity as compared to the traditional proportional droop controller.</p>","PeriodicalId":36490,"journal":{"name":"IET Smart Grid","volume":"7 1","pages":"63-77"},"PeriodicalIF":2.4000,"publicationDate":"2023-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/stg2.12140","citationCount":"0","resultStr":"{\"title\":\"Frequency control by BESS for smooth Island transition of a hydro-powered microgrid\",\"authors\":\"Ahmed Sunjaq, Peiyuan Chen, Massimo Bongiorno, Ritwik Majumder, Jan R. Svensson\",\"doi\":\"10.1049/stg2.12140\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This paper develops a frequency control strategy for a battery energy storage system to facilitate the smooth island transition of a hydro-powered microgrid during unplanned grid outages. The proposed frequency control strategy uses a PI-based droop controller, where the tuning of the controller accounts for the limitations in the power response of a hydro generator and the required frequency quality of the microgrid. The effectiveness of the frequency control strategy is verified in Simulink using phasor simulations, and it is further validated in laboratory tests. The results demonstrate that the proposed PI-based droop and its tuning strategy fulfill the desired frequency quality requirement of the hydro-powered microgrid without over-dimensioning the size of the storage capacity as compared to the traditional proportional droop controller.</p>\",\"PeriodicalId\":36490,\"journal\":{\"name\":\"IET Smart Grid\",\"volume\":\"7 1\",\"pages\":\"63-77\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2023-11-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1049/stg2.12140\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IET Smart Grid\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/stg2.12140\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Smart Grid","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/stg2.12140","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
摘要
本文为电池储能系统开发了一种频率控制策略,以促进水力发电微电网在计划外电网停电期间实现平稳的孤岛过渡。拟议的频率控制策略采用基于 PI 的下垂控制器,控制器的调整考虑了水力发电机功率响应的限制和微电网所需的频率质量。在 Simulink 中使用相位模拟验证了频率控制策略的有效性,并在实验室测试中进行了进一步验证。结果表明,与传统的比例下垂控制器相比,所提出的基于 PI 的下垂及其调整策略可满足水力发电微电网所需的频率质量要求,且不会过大存储容量。
Frequency control by BESS for smooth Island transition of a hydro-powered microgrid
This paper develops a frequency control strategy for a battery energy storage system to facilitate the smooth island transition of a hydro-powered microgrid during unplanned grid outages. The proposed frequency control strategy uses a PI-based droop controller, where the tuning of the controller accounts for the limitations in the power response of a hydro generator and the required frequency quality of the microgrid. The effectiveness of the frequency control strategy is verified in Simulink using phasor simulations, and it is further validated in laboratory tests. The results demonstrate that the proposed PI-based droop and its tuning strategy fulfill the desired frequency quality requirement of the hydro-powered microgrid without over-dimensioning the size of the storage capacity as compared to the traditional proportional droop controller.