基于双级模型和混合整数线性规划的分布式能源电动汽车充电站优化

Q3 Engineering
Evangelin Jeba J, Suchitra D
{"title":"基于双级模型和混合整数线性规划的分布式能源电动汽车充电站优化","authors":"Evangelin Jeba J, Suchitra D","doi":"10.4271/2023-28-0100","DOIUrl":null,"url":null,"abstract":"<div class=\"section abstract\"><div class=\"htmlview paragraph\">In this research paper, a novel bi-level approach has been introduced to enhance grid flexibility through a flexible power management system, taking into account the availability of renewable and adaptable resources. The proposed optimization strategy focuses on minimizing the total daily idle time of Electric Vehicles (EVs) by optimizing charging processes at both Fast Charging Station (FCSs) and user-level charging. The objectives of FCS energy management and EV idle time are considered as lower and upper-level models, respectively, which are optimized by the proposed bi-level strategy with Particle Swarm Optimization (PSO) algorithm. The investigation confirms the effectiveness and reliability of the recommended optimization strategy. Test results highlight its success in enhancing financial gains for charging stations and EV users, benefiting grid operators and consumers alike. The outcomes reveal a notable decrease in the FCS day-to-day charge rate, dropping from $3795.84 to $3523.84, marking a 6.34% reduction and providing an advantage to station owners.</div></div>","PeriodicalId":38377,"journal":{"name":"SAE Technical Papers","volume":" 2","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Integration of Bi-Level Model and Mixed Integer Linear Programming for Optimization of Electric Vehicle Charging Stations with Distributed Energy Sources\",\"authors\":\"Evangelin Jeba J, Suchitra D\",\"doi\":\"10.4271/2023-28-0100\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div class=\\\"section abstract\\\"><div class=\\\"htmlview paragraph\\\">In this research paper, a novel bi-level approach has been introduced to enhance grid flexibility through a flexible power management system, taking into account the availability of renewable and adaptable resources. The proposed optimization strategy focuses on minimizing the total daily idle time of Electric Vehicles (EVs) by optimizing charging processes at both Fast Charging Station (FCSs) and user-level charging. The objectives of FCS energy management and EV idle time are considered as lower and upper-level models, respectively, which are optimized by the proposed bi-level strategy with Particle Swarm Optimization (PSO) algorithm. The investigation confirms the effectiveness and reliability of the recommended optimization strategy. Test results highlight its success in enhancing financial gains for charging stations and EV users, benefiting grid operators and consumers alike. The outcomes reveal a notable decrease in the FCS day-to-day charge rate, dropping from $3795.84 to $3523.84, marking a 6.34% reduction and providing an advantage to station owners.</div></div>\",\"PeriodicalId\":38377,\"journal\":{\"name\":\"SAE Technical Papers\",\"volume\":\" 2\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-11-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SAE Technical Papers\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4271/2023-28-0100\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SAE Technical Papers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4271/2023-28-0100","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

<div class="section abstract"><div class="htmlview段落">在本研究中,考虑到可再生和适应性资源的可用性,引入了一种新的双层方法,通过灵活的电源管理系统来增强电网的灵活性。该优化策略通过优化快速充电站(FCSs)和用户级充电的充电过程,将电动汽车(ev)的总闲置时间最小化。将FCS能量管理目标和EV空闲时间目标分别视为下一级和上一级模型,采用粒子群优化(PSO)算法对两级策略进行优化。研究结果证实了所推荐的优化策略的有效性和可靠性。测试结果显示,它成功地提高了充电站和电动汽车用户的经济收益,使电网运营商和消费者都受益。结果显示,FCS的日常充电费率显著下降,从3795.84美元降至3523.84美元,减少了6.34%,为加油站所有者提供了优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Integration of Bi-Level Model and Mixed Integer Linear Programming for Optimization of Electric Vehicle Charging Stations with Distributed Energy Sources
In this research paper, a novel bi-level approach has been introduced to enhance grid flexibility through a flexible power management system, taking into account the availability of renewable and adaptable resources. The proposed optimization strategy focuses on minimizing the total daily idle time of Electric Vehicles (EVs) by optimizing charging processes at both Fast Charging Station (FCSs) and user-level charging. The objectives of FCS energy management and EV idle time are considered as lower and upper-level models, respectively, which are optimized by the proposed bi-level strategy with Particle Swarm Optimization (PSO) algorithm. The investigation confirms the effectiveness and reliability of the recommended optimization strategy. Test results highlight its success in enhancing financial gains for charging stations and EV users, benefiting grid operators and consumers alike. The outcomes reveal a notable decrease in the FCS day-to-day charge rate, dropping from $3795.84 to $3523.84, marking a 6.34% reduction and providing an advantage to station owners.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
SAE Technical Papers
SAE Technical Papers Engineering-Industrial and Manufacturing Engineering
CiteScore
1.00
自引率
0.00%
发文量
1487
期刊介绍: SAE Technical Papers are written and peer-reviewed by experts in the automotive, aerospace, and commercial vehicle industries. Browse the more than 102,000 technical papers and journal articles on the latest advances in technical research and applied technical engineering information below.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信