Praveena V, Deborah Stephen, Rajarajeswari R, Phavan Kumaar J S
{"title":"为提高性能而采用氢喷射的CI发动机的综合火用分析","authors":"Praveena V, Deborah Stephen, Rajarajeswari R, Phavan Kumaar J S","doi":"10.4271/2023-28-0129","DOIUrl":null,"url":null,"abstract":"<div class=\"section abstract\"><div class=\"htmlview paragraph\">This study aims to investigate the effect of hydrogen injection on the performance and emissions of a compression ignition (CI) engine running on biodiesel. The tests are performed on a single-cylinder CI engine cooled by water, operating at a consistent speed of 1500 rpm. The torque load range varies from 0.01 kg to 18 kg, and hydrogen injection rates range from 4 litres per minute (lpm) to 10 lpm. The study focuses on evaluating the impact of hydrogen injection on various performance metrics, including exergetic efficiency, brake thermal efficiency, brake specific fuel consumption (BSFC), cylinder pressure, heat release rate, and exhaust gas temperature. The findings reveal that hydrogen injection significantly improves the performance of the biodiesel-run CI engine. The highest improvement is observed at a hydrogen injection rate of 10 lpm, which results in a 5% decrease in BSFC, a 6% increase in brake thermal efficiency, and an exergetic efficiency of 25.3%. Furthermore, exergy analysis is conducted to assess the contribution of different components, such as shaft work, cooling water, exhaust gas availability, and entropy generation. The results demonstrate that hydrogen injection can be an effective strategy for enhancing the performance and sustainability of CI engines powered by biodiesel. Overall, this research provides information about the potential advantages of hydrogen injection for CI engines powered by biodiesel. The findings of this study will be useful for future investigations and creation of sustainable engine technologies.</div></div>","PeriodicalId":38377,"journal":{"name":"SAE Technical Papers","volume":" 9","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Comprehensive Exergy Analysis of CI Engines with Hydrogen Injection for Enhanced Performance\",\"authors\":\"Praveena V, Deborah Stephen, Rajarajeswari R, Phavan Kumaar J S\",\"doi\":\"10.4271/2023-28-0129\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div class=\\\"section abstract\\\"><div class=\\\"htmlview paragraph\\\">This study aims to investigate the effect of hydrogen injection on the performance and emissions of a compression ignition (CI) engine running on biodiesel. The tests are performed on a single-cylinder CI engine cooled by water, operating at a consistent speed of 1500 rpm. The torque load range varies from 0.01 kg to 18 kg, and hydrogen injection rates range from 4 litres per minute (lpm) to 10 lpm. The study focuses on evaluating the impact of hydrogen injection on various performance metrics, including exergetic efficiency, brake thermal efficiency, brake specific fuel consumption (BSFC), cylinder pressure, heat release rate, and exhaust gas temperature. The findings reveal that hydrogen injection significantly improves the performance of the biodiesel-run CI engine. The highest improvement is observed at a hydrogen injection rate of 10 lpm, which results in a 5% decrease in BSFC, a 6% increase in brake thermal efficiency, and an exergetic efficiency of 25.3%. Furthermore, exergy analysis is conducted to assess the contribution of different components, such as shaft work, cooling water, exhaust gas availability, and entropy generation. The results demonstrate that hydrogen injection can be an effective strategy for enhancing the performance and sustainability of CI engines powered by biodiesel. Overall, this research provides information about the potential advantages of hydrogen injection for CI engines powered by biodiesel. The findings of this study will be useful for future investigations and creation of sustainable engine technologies.</div></div>\",\"PeriodicalId\":38377,\"journal\":{\"name\":\"SAE Technical Papers\",\"volume\":\" 9\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-11-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SAE Technical Papers\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4271/2023-28-0129\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SAE Technical Papers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4271/2023-28-0129","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
A Comprehensive Exergy Analysis of CI Engines with Hydrogen Injection for Enhanced Performance
This study aims to investigate the effect of hydrogen injection on the performance and emissions of a compression ignition (CI) engine running on biodiesel. The tests are performed on a single-cylinder CI engine cooled by water, operating at a consistent speed of 1500 rpm. The torque load range varies from 0.01 kg to 18 kg, and hydrogen injection rates range from 4 litres per minute (lpm) to 10 lpm. The study focuses on evaluating the impact of hydrogen injection on various performance metrics, including exergetic efficiency, brake thermal efficiency, brake specific fuel consumption (BSFC), cylinder pressure, heat release rate, and exhaust gas temperature. The findings reveal that hydrogen injection significantly improves the performance of the biodiesel-run CI engine. The highest improvement is observed at a hydrogen injection rate of 10 lpm, which results in a 5% decrease in BSFC, a 6% increase in brake thermal efficiency, and an exergetic efficiency of 25.3%. Furthermore, exergy analysis is conducted to assess the contribution of different components, such as shaft work, cooling water, exhaust gas availability, and entropy generation. The results demonstrate that hydrogen injection can be an effective strategy for enhancing the performance and sustainability of CI engines powered by biodiesel. Overall, this research provides information about the potential advantages of hydrogen injection for CI engines powered by biodiesel. The findings of this study will be useful for future investigations and creation of sustainable engine technologies.
期刊介绍:
SAE Technical Papers are written and peer-reviewed by experts in the automotive, aerospace, and commercial vehicle industries. Browse the more than 102,000 technical papers and journal articles on the latest advances in technical research and applied technical engineering information below.