简单画廊中的拓扑艺术

Daniel Bertschinger, Nicolas El Maalouly, Tillmann Miltzow, Patrick Schnider, Simon Weber
{"title":"简单画廊中的拓扑艺术","authors":"Daniel Bertschinger, Nicolas El Maalouly, Tillmann Miltzow, Patrick Schnider, Simon Weber","doi":"10.1007/s00454-023-00540-x","DOIUrl":null,"url":null,"abstract":"Abstract Let P be a simple polygon, then the art gallery problem is looking for a minimum set of points (guards) that can see every point in P . We say two points $$a,b\\in P$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>a</mml:mi> <mml:mo>,</mml:mo> <mml:mi>b</mml:mi> <mml:mo>∈</mml:mo> <mml:mi>P</mml:mi> </mml:mrow> </mml:math> can see each other if the line segment $${\\text {seg}} (a,b)$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mtext>seg</mml:mtext> <mml:mo>(</mml:mo> <mml:mi>a</mml:mi> <mml:mo>,</mml:mo> <mml:mi>b</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> </mml:math> is contained in P . We denote by V ( P ) the family of all minimum guard placements. The Hausdorff distance makes V ( P ) a metric space and thus a topological space. We show homotopy-universality, that is, for every semi-algebraic set S there is a polygon P such that V ( P ) is homotopy equivalent to S . Furthermore, for various concrete topological spaces T , we describe instances I of the art gallery problem such that V ( I ) is homeomorphic to T .","PeriodicalId":356162,"journal":{"name":"Discrete and Computational Geometry","volume":"396 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Topological Art in Simple Galleries\",\"authors\":\"Daniel Bertschinger, Nicolas El Maalouly, Tillmann Miltzow, Patrick Schnider, Simon Weber\",\"doi\":\"10.1007/s00454-023-00540-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Let P be a simple polygon, then the art gallery problem is looking for a minimum set of points (guards) that can see every point in P . We say two points $$a,b\\\\in P$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mrow> <mml:mi>a</mml:mi> <mml:mo>,</mml:mo> <mml:mi>b</mml:mi> <mml:mo>∈</mml:mo> <mml:mi>P</mml:mi> </mml:mrow> </mml:math> can see each other if the line segment $${\\\\text {seg}} (a,b)$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mrow> <mml:mtext>seg</mml:mtext> <mml:mo>(</mml:mo> <mml:mi>a</mml:mi> <mml:mo>,</mml:mo> <mml:mi>b</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> </mml:math> is contained in P . We denote by V ( P ) the family of all minimum guard placements. The Hausdorff distance makes V ( P ) a metric space and thus a topological space. We show homotopy-universality, that is, for every semi-algebraic set S there is a polygon P such that V ( P ) is homotopy equivalent to S . Furthermore, for various concrete topological spaces T , we describe instances I of the art gallery problem such that V ( I ) is homeomorphic to T .\",\"PeriodicalId\":356162,\"journal\":{\"name\":\"Discrete and Computational Geometry\",\"volume\":\"396 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-08-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete and Computational Geometry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s00454-023-00540-x\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete and Computational Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00454-023-00540-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

设P是一个简单的多边形,那么美术馆问题就是寻找能看到P上每个点的最小点集(守卫)。我们说两点$$a,b\in P$$ a, b∈P,如果线段$${\text {seg}} (a,b)$$ seg (a, b)包含在P中,则两点相交。我们用V (P)表示所有最小守卫位置的族。豪斯多夫距离使V (P)成为一个度量空间,从而成为一个拓扑空间。我们证明了同伦通用性,即对于每一个半代数集S都存在一个多边形P使得V (P)同伦等价于S。进一步,对于各种具体拓扑空间T,我们描述了美术馆问题的实例I,使得V (I)同胚于T。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Topological Art in Simple Galleries
Abstract Let P be a simple polygon, then the art gallery problem is looking for a minimum set of points (guards) that can see every point in P . We say two points $$a,b\in P$$ a , b P can see each other if the line segment $${\text {seg}} (a,b)$$ seg ( a , b ) is contained in P . We denote by V ( P ) the family of all minimum guard placements. The Hausdorff distance makes V ( P ) a metric space and thus a topological space. We show homotopy-universality, that is, for every semi-algebraic set S there is a polygon P such that V ( P ) is homotopy equivalent to S . Furthermore, for various concrete topological spaces T , we describe instances I of the art gallery problem such that V ( I ) is homeomorphic to T .
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信