具有箝位边界和长度约束的弹性图形

IF 1 3区 数学 Q1 MATHEMATICS
Anna Dall’Acqua, Klaus Deckelnick
{"title":"具有箝位边界和长度约束的弹性图形","authors":"Anna Dall’Acqua,&nbsp;Klaus Deckelnick","doi":"10.1007/s10231-023-01396-x","DOIUrl":null,"url":null,"abstract":"<div><p>We study two minimization problems concerning the elastic energy on curves given by graphs subject to symmetric clamped boundary conditions. In the first, the inextensible problem, we fix the length of the curves while in the second, the extensible problem, we add a term penalizing the length. This can be considered as a one-dimensional version of the Helfrich energy. In both cases, we prove existence, uniqueness and qualitative properties of the minimizers. A key ingredient in our analysis is the use of Noether identities valid for critical points of the energy and derived from the invariance of the energy functional with respect to translations. These identities allow us also to prove curvature bounds and ordering of the minimizers even though the problem is of fourth order and hence in general does not allow for comparison principles.</p></div>","PeriodicalId":8265,"journal":{"name":"Annali di Matematica Pura ed Applicata","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2023-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10231-023-01396-x.pdf","citationCount":"0","resultStr":"{\"title\":\"Elastic graphs with clamped boundary and length constraints\",\"authors\":\"Anna Dall’Acqua,&nbsp;Klaus Deckelnick\",\"doi\":\"10.1007/s10231-023-01396-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We study two minimization problems concerning the elastic energy on curves given by graphs subject to symmetric clamped boundary conditions. In the first, the inextensible problem, we fix the length of the curves while in the second, the extensible problem, we add a term penalizing the length. This can be considered as a one-dimensional version of the Helfrich energy. In both cases, we prove existence, uniqueness and qualitative properties of the minimizers. A key ingredient in our analysis is the use of Noether identities valid for critical points of the energy and derived from the invariance of the energy functional with respect to translations. These identities allow us also to prove curvature bounds and ordering of the minimizers even though the problem is of fourth order and hence in general does not allow for comparison principles.</p></div>\",\"PeriodicalId\":8265,\"journal\":{\"name\":\"Annali di Matematica Pura ed Applicata\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-11-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10231-023-01396-x.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annali di Matematica Pura ed Applicata\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10231-023-01396-x\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annali di Matematica Pura ed Applicata","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10231-023-01396-x","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了两个关于曲线弹性能量的最小化问题,这两个问题都是在对称夹紧边界条件下由图形给出的。在第一个问题(不可延伸问题)中,我们固定了曲线的长度,而在第二个问题(可延伸问题)中,我们添加了一个惩罚长度的项。这可以看作是一维版的赫尔弗里希能量。在这两种情况下,我们都证明了最小值的存在性、唯一性和定性。我们分析中的一个关键要素是使用对能量临界点有效的诺特等式,这些等式来自能量函数对平移的不变性。尽管问题是四阶的,因此一般不允许使用比较原则,但这些等式也能让我们证明最小值的曲率边界和排序。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Elastic graphs with clamped boundary and length constraints

Elastic graphs with clamped boundary and length constraints

We study two minimization problems concerning the elastic energy on curves given by graphs subject to symmetric clamped boundary conditions. In the first, the inextensible problem, we fix the length of the curves while in the second, the extensible problem, we add a term penalizing the length. This can be considered as a one-dimensional version of the Helfrich energy. In both cases, we prove existence, uniqueness and qualitative properties of the minimizers. A key ingredient in our analysis is the use of Noether identities valid for critical points of the energy and derived from the invariance of the energy functional with respect to translations. These identities allow us also to prove curvature bounds and ordering of the minimizers even though the problem is of fourth order and hence in general does not allow for comparison principles.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.10
自引率
10.00%
发文量
99
审稿时长
>12 weeks
期刊介绍: This journal, the oldest scientific periodical in Italy, was originally edited by Barnaba Tortolini and Francesco Brioschi and has appeared since 1850. Nowadays it is managed by a nonprofit organization, the Fondazione Annali di Matematica Pura ed Applicata, c.o. Dipartimento di Matematica "U. Dini", viale Morgagni 67A, 50134 Firenze, Italy, e-mail annali@math.unifi.it). A board of Italian university professors governs the Fondazione and appoints the editors of the journal, whose responsibility it is to supervise the refereeing process. The names of governors and editors appear on the front page of each issue. Their addresses appear in the title pages of each issue.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信