一类双频三角b样条曲线的保形性

IF 2.2 3区 综合性期刊 Q2 MULTIDISCIPLINARY SCIENCES
Symmetry-Basel Pub Date : 2023-11-10 DOI:10.3390/sym15112041
Gudrun Albrecht, Esmeralda Mainar, Juan Manuel Peña, Beatriz Rubio
{"title":"一类双频三角b样条曲线的保形性","authors":"Gudrun Albrecht, Esmeralda Mainar, Juan Manuel Peña, Beatriz Rubio","doi":"10.3390/sym15112041","DOIUrl":null,"url":null,"abstract":"This paper proposes a new approach to define two frequency trigonometric spline curves with interesting shape preserving properties. This construction requires the normalized B-basis of the space U4(Iα)=span{1,cost,sint,cos2t,sin2t} defined on compact intervals Iα=[0,α], where α is a global shape parameter. It will be shown that the normalized B-basis can be regarded as the equivalent in the trigonometric space U4(Iα) to the Bernstein polynomial basis and shares its well-known symmetry properties. In fact, the normalized B-basis functions converge to the Bernstein polynomials as α→0. As a consequence, the convergence of the obtained piecewise trigonometric curves to uniform quartic B-Spline curves will be also shown. The proposed trigonometric spline curves can be used for CAM design, trajectory-generation, data fitting on the sphere and even to define new algebraic-trigonometric Pythagorean-Hodograph curves and their piecewise counterparts allowing the resolution of C(3 Hermite interpolation problems.","PeriodicalId":48874,"journal":{"name":"Symmetry-Basel","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2023-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Shape Preserving Class of Two-Frequency Trigonometric B-Spline Curves\",\"authors\":\"Gudrun Albrecht, Esmeralda Mainar, Juan Manuel Peña, Beatriz Rubio\",\"doi\":\"10.3390/sym15112041\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a new approach to define two frequency trigonometric spline curves with interesting shape preserving properties. This construction requires the normalized B-basis of the space U4(Iα)=span{1,cost,sint,cos2t,sin2t} defined on compact intervals Iα=[0,α], where α is a global shape parameter. It will be shown that the normalized B-basis can be regarded as the equivalent in the trigonometric space U4(Iα) to the Bernstein polynomial basis and shares its well-known symmetry properties. In fact, the normalized B-basis functions converge to the Bernstein polynomials as α→0. As a consequence, the convergence of the obtained piecewise trigonometric curves to uniform quartic B-Spline curves will be also shown. The proposed trigonometric spline curves can be used for CAM design, trajectory-generation, data fitting on the sphere and even to define new algebraic-trigonometric Pythagorean-Hodograph curves and their piecewise counterparts allowing the resolution of C(3 Hermite interpolation problems.\",\"PeriodicalId\":48874,\"journal\":{\"name\":\"Symmetry-Basel\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2023-11-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Symmetry-Basel\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/sym15112041\",\"RegionNum\":3,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Symmetry-Basel","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/sym15112041","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种定义具有有趣保形特性的两频三角样条曲线的新方法。这种构造需要空间U4(Iα)=span{1,cost,sint,cos2t,sin2t}的归一化b基,定义在紧区间Iα=[0,α]上,其中α是一个全局形状参数。将证明归一化的b基在三角空间U4(Iα)中可视为伯恩斯坦多项式基的等价,并具有其众所周知的对称性。事实上,当α→0时,归一化b基函数收敛于Bernstein多项式。因此,所得到的分段三角曲线收敛于一致的四次b样条曲线也将得到证明。所提出的三角样条曲线可用于凸轮设计、轨迹生成、球面上的数据拟合,甚至可以定义新的代数-三角毕达哥拉斯-霍图曲线及其分段对应曲线,从而解决C(3) Hermite插值问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Shape Preserving Class of Two-Frequency Trigonometric B-Spline Curves
This paper proposes a new approach to define two frequency trigonometric spline curves with interesting shape preserving properties. This construction requires the normalized B-basis of the space U4(Iα)=span{1,cost,sint,cos2t,sin2t} defined on compact intervals Iα=[0,α], where α is a global shape parameter. It will be shown that the normalized B-basis can be regarded as the equivalent in the trigonometric space U4(Iα) to the Bernstein polynomial basis and shares its well-known symmetry properties. In fact, the normalized B-basis functions converge to the Bernstein polynomials as α→0. As a consequence, the convergence of the obtained piecewise trigonometric curves to uniform quartic B-Spline curves will be also shown. The proposed trigonometric spline curves can be used for CAM design, trajectory-generation, data fitting on the sphere and even to define new algebraic-trigonometric Pythagorean-Hodograph curves and their piecewise counterparts allowing the resolution of C(3 Hermite interpolation problems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Symmetry-Basel
Symmetry-Basel MULTIDISCIPLINARY SCIENCES-
CiteScore
5.40
自引率
11.10%
发文量
2276
审稿时长
14.88 days
期刊介绍: Symmetry (ISSN 2073-8994), an international and interdisciplinary scientific journal, publishes reviews, regular research papers and short notes. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. There is no restriction on the length of the papers. Full experimental and/or methodical details must be provided, so that results can be reproduced.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信