基于密度泛函理论(DFT)的三唑类化合物对铁的缓蚀性能分析

KARAKUŞ, Nihat , KAYA, Savaş
{"title":"基于密度泛函理论(DFT)的三唑类化合物对铁的缓蚀性能分析","authors":"KARAKUŞ, Nihat\n , KAYA, Savaş\n ","doi":"10.17776/csj.1330590","DOIUrl":null,"url":null,"abstract":"Iron is one of the widely used metals in industry. For that reason, the prevention of the corrosion of such metals via new designed inhibitor systems is among the interest of corrosion scientists. In the present paper, we investigated the corrosion inhibition performance of 2-((1-(4-nitrophenyl)-1H-1,2,3-triazol-4-yl) methoxy) benzaldehyde (A), 4-((1-(4-nitrophenyl)-1H-1,2,3-triazol-4-yl) methoxy) benzaldehyde (B), 4-((4-nitrophenoxy) methyl)-1-(4-nitrophenyl)-1H-1,2,3-triazole (C), 4-methyl-7-((1-(4-nitrophenyl)-1H-1,2,3-triazol-4-yl) methoxy)-2H-chromen-2-one (D) against iron corrosion. For the mentioned inhibitor systems, important reactivity descriptors like frontier orbital energies, chemical potential, electronegativity, hardness, softness, polarizability, dipole moment, back-donation energy, electrophilicity, electroaccepting power and electrodonating power were calculated and discussed. Calculations were repeated using various methods and basis sets in different phases. The chemical reactivities of the inhibitors were predicted in the light of well-known electronic structure rules like Maximum Hardness and Minimum Polarizability Principles. The obtained data showed that the best corrosion inhibitor among them is molecule D while the most stable molecule is molecule C. The theoretical data support the experimental observations.","PeriodicalId":10906,"journal":{"name":"Cumhuriyet Science Journal","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Density Functional Theory (DFT) based Analysis on the Inhibition Performances of Some Triazole Derivatives for Iron Corrosion\",\"authors\":\"KARAKUŞ, Nihat\\n , KAYA, Savaş\\n \",\"doi\":\"10.17776/csj.1330590\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Iron is one of the widely used metals in industry. For that reason, the prevention of the corrosion of such metals via new designed inhibitor systems is among the interest of corrosion scientists. In the present paper, we investigated the corrosion inhibition performance of 2-((1-(4-nitrophenyl)-1H-1,2,3-triazol-4-yl) methoxy) benzaldehyde (A), 4-((1-(4-nitrophenyl)-1H-1,2,3-triazol-4-yl) methoxy) benzaldehyde (B), 4-((4-nitrophenoxy) methyl)-1-(4-nitrophenyl)-1H-1,2,3-triazole (C), 4-methyl-7-((1-(4-nitrophenyl)-1H-1,2,3-triazol-4-yl) methoxy)-2H-chromen-2-one (D) against iron corrosion. For the mentioned inhibitor systems, important reactivity descriptors like frontier orbital energies, chemical potential, electronegativity, hardness, softness, polarizability, dipole moment, back-donation energy, electrophilicity, electroaccepting power and electrodonating power were calculated and discussed. Calculations were repeated using various methods and basis sets in different phases. The chemical reactivities of the inhibitors were predicted in the light of well-known electronic structure rules like Maximum Hardness and Minimum Polarizability Principles. The obtained data showed that the best corrosion inhibitor among them is molecule D while the most stable molecule is molecule C. The theoretical data support the experimental observations.\",\"PeriodicalId\":10906,\"journal\":{\"name\":\"Cumhuriyet Science Journal\",\"volume\":\"47 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-09-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cumhuriyet Science Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17776/csj.1330590\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cumhuriyet Science Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17776/csj.1330590","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

铁是工业上广泛使用的金属之一。因此,通过新设计的缓蚀剂系统来防止这些金属的腐蚀是腐蚀科学家的兴趣之一。本文研究了2-((1-(4-硝基苯基)- 1h -1,2,3-三唑-4-基)甲氧基)苯甲醛(A)、4-((1-(4-硝基苯基)- 1h -1,2,3-三唑-4-基)甲氧基)苯甲醛(B)、4-(4-硝基苯氧基)-1-(4-硝基苯基)- 1h -1,2,3-硝基苯基)(C)、4-甲基-7-((1-(4-硝基苯基)- 1h -1,2,3-三唑-4-基)甲氧基)- 2h - chromen2 -one (D)对铁腐蚀的缓蚀性能。对上述缓蚀剂体系的前沿轨道能、化学势、电负性、硬度、柔软度、极化率、偶极矩、背给能、亲电性、电接受功率和电给功率等重要反应性描述符进行了计算和讨论。在不同的阶段用不同的方法和基组重复计算。根据最大硬度和最小极化率等众所周知的电子结构规律预测了抑制剂的化学反应性。所得数据表明,其中缓蚀剂性能最好的是D分子,最稳定的是c分子,理论数据与实验观察结果相吻合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Density Functional Theory (DFT) based Analysis on the Inhibition Performances of Some Triazole Derivatives for Iron Corrosion
Iron is one of the widely used metals in industry. For that reason, the prevention of the corrosion of such metals via new designed inhibitor systems is among the interest of corrosion scientists. In the present paper, we investigated the corrosion inhibition performance of 2-((1-(4-nitrophenyl)-1H-1,2,3-triazol-4-yl) methoxy) benzaldehyde (A), 4-((1-(4-nitrophenyl)-1H-1,2,3-triazol-4-yl) methoxy) benzaldehyde (B), 4-((4-nitrophenoxy) methyl)-1-(4-nitrophenyl)-1H-1,2,3-triazole (C), 4-methyl-7-((1-(4-nitrophenyl)-1H-1,2,3-triazol-4-yl) methoxy)-2H-chromen-2-one (D) against iron corrosion. For the mentioned inhibitor systems, important reactivity descriptors like frontier orbital energies, chemical potential, electronegativity, hardness, softness, polarizability, dipole moment, back-donation energy, electrophilicity, electroaccepting power and electrodonating power were calculated and discussed. Calculations were repeated using various methods and basis sets in different phases. The chemical reactivities of the inhibitors were predicted in the light of well-known electronic structure rules like Maximum Hardness and Minimum Polarizability Principles. The obtained data showed that the best corrosion inhibitor among them is molecule D while the most stable molecule is molecule C. The theoretical data support the experimental observations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
51
审稿时长
10 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信