描述高寒地区积雪格局的形态学指标

IF 2.5 4区 地球科学 Q2 GEOGRAPHY, PHYSICAL
Lucia Ferrarin, Karsten Schulz, Daniele Bocchiola, Franziska Koch
{"title":"描述高寒地区积雪格局的形态学指标","authors":"Lucia Ferrarin, Karsten Schulz, Daniele Bocchiola, Franziska Koch","doi":"10.1017/aog.2023.62","DOIUrl":null,"url":null,"abstract":"Abstract The spatiotemporal distribution of snow affects hydrological and climatological processes at different scales. Accordingly, quantifying geometric features of snow-cover patterns is important, providing a valuable complement for snow water equivalent (SWE) modelling. This study on satellite-based morphological analysis originally uses two types of geometric indexes: (1) MN, Minkowski numbers (area (MN1), perimeter (MN2), Euler number (MN3)), and (2) CL, average chord length, to describe the morphology of Sentinel-2-derived snow-covered areas (SCAs), within the high-alpine site Zugspitze for a 5 year period. Results indicate that they capture the seasonal variability of snow-cover patterns, particularly during accumulation and ablation. Being to some degree independent from each other, MN2, MN3 and CL provide additional information upon shape, connectivity and length scale of snow cover, compared to most used indexes (e.g. fractional SCA). Correlation values up to +0.7 for MN2, +0.58 for MN3 and +0.46 for CL were observed with selected topographic characteristics, suggesting a close connection between geometric features of snow cover and ground features. Comparing in situ SWE measurements with MN and CL shows a correlation between −0.5 and +0.5. These indexes can hence be applied in combination with in situ data and/or modelling approaches to improve spatially distributed SWE in high-alpine catchments.","PeriodicalId":8211,"journal":{"name":"Annals of Glaciology","volume":"204 2","pages":"0"},"PeriodicalIF":2.5000,"publicationDate":"2023-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Morphological indexes to describe snow-cover patterns in a high-alpine area\",\"authors\":\"Lucia Ferrarin, Karsten Schulz, Daniele Bocchiola, Franziska Koch\",\"doi\":\"10.1017/aog.2023.62\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The spatiotemporal distribution of snow affects hydrological and climatological processes at different scales. Accordingly, quantifying geometric features of snow-cover patterns is important, providing a valuable complement for snow water equivalent (SWE) modelling. This study on satellite-based morphological analysis originally uses two types of geometric indexes: (1) MN, Minkowski numbers (area (MN1), perimeter (MN2), Euler number (MN3)), and (2) CL, average chord length, to describe the morphology of Sentinel-2-derived snow-covered areas (SCAs), within the high-alpine site Zugspitze for a 5 year period. Results indicate that they capture the seasonal variability of snow-cover patterns, particularly during accumulation and ablation. Being to some degree independent from each other, MN2, MN3 and CL provide additional information upon shape, connectivity and length scale of snow cover, compared to most used indexes (e.g. fractional SCA). Correlation values up to +0.7 for MN2, +0.58 for MN3 and +0.46 for CL were observed with selected topographic characteristics, suggesting a close connection between geometric features of snow cover and ground features. Comparing in situ SWE measurements with MN and CL shows a correlation between −0.5 and +0.5. These indexes can hence be applied in combination with in situ data and/or modelling approaches to improve spatially distributed SWE in high-alpine catchments.\",\"PeriodicalId\":8211,\"journal\":{\"name\":\"Annals of Glaciology\",\"volume\":\"204 2\",\"pages\":\"0\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2023-10-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Glaciology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1017/aog.2023.62\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GEOGRAPHY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Glaciology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/aog.2023.62","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOGRAPHY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

雪的时空分布在不同尺度上影响着水文和气候过程。因此,量化积雪模式的几何特征是很重要的,为雪水当量(SWE)模型提供了有价值的补充。基于卫星的形态分析研究最初使用两种几何指标:(1)MN, Minkowski数(面积(MN1),周长(MN2),欧拉数(MN3))和(2)CL,平均弦长,来描述高高山祖格皮采遗址5年期间sentinel -2衍生积雪覆盖区域(SCAs)的形态。结果表明,它们捕获了积雪模式的季节变化,特别是在积累和消融期间。MN2、MN3和CL在一定程度上相互独立,与大多数常用的指数(如分数SCA)相比,它们提供了关于积雪形状、连通性和长度尺度的额外信息。MN2、MN3和CL的相关系数分别为+0.7、+0.58和+0.46,表明积雪几何特征与地面特征之间存在密切联系。将原位SWE测量值与MN和CL进行比较,显示出−0.5和+0.5之间的相关性。因此,这些指数可以与现场数据和/或建模方法相结合,以改善高高山流域SWE的空间分布。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Morphological indexes to describe snow-cover patterns in a high-alpine area
Abstract The spatiotemporal distribution of snow affects hydrological and climatological processes at different scales. Accordingly, quantifying geometric features of snow-cover patterns is important, providing a valuable complement for snow water equivalent (SWE) modelling. This study on satellite-based morphological analysis originally uses two types of geometric indexes: (1) MN, Minkowski numbers (area (MN1), perimeter (MN2), Euler number (MN3)), and (2) CL, average chord length, to describe the morphology of Sentinel-2-derived snow-covered areas (SCAs), within the high-alpine site Zugspitze for a 5 year period. Results indicate that they capture the seasonal variability of snow-cover patterns, particularly during accumulation and ablation. Being to some degree independent from each other, MN2, MN3 and CL provide additional information upon shape, connectivity and length scale of snow cover, compared to most used indexes (e.g. fractional SCA). Correlation values up to +0.7 for MN2, +0.58 for MN3 and +0.46 for CL were observed with selected topographic characteristics, suggesting a close connection between geometric features of snow cover and ground features. Comparing in situ SWE measurements with MN and CL shows a correlation between −0.5 and +0.5. These indexes can hence be applied in combination with in situ data and/or modelling approaches to improve spatially distributed SWE in high-alpine catchments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annals of Glaciology
Annals of Glaciology GEOGRAPHY, PHYSICAL-GEOSCIENCES, MULTIDISCIPLINARY
CiteScore
8.20
自引率
0.00%
发文量
0
审稿时长
>12 weeks
期刊介绍: Annals of Glaciology publishes original scientific articles and letters in selected aspects of glaciology-the study of ice. Each issue of the Annals is thematic, focussing on a specific subject. The Council of the International Glaciological Society welcomes proposals for thematic issues from the glaciological community. Once a theme is approved, the Council appoints an Associate Chief Editor and a team of Scientific Editors to handle the submission, peer review and publication of papers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信