美联储如何决策的实际应用:机器学习增强泰勒规则

Boyu Wu, Amina Enkhbold, Asawari Sathe, Qian Wang
{"title":"美联储如何决策的实际应用:机器学习增强泰勒规则","authors":"Boyu Wu, Amina Enkhbold, Asawari Sathe, Qian Wang","doi":"10.3905/pa.2023.pa572","DOIUrl":null,"url":null,"abstract":"In <ext-link><bold><italic>How Does the Fed Make Decisions: A Machine Learning Augmented Taylor Rule</italic></bold></ext-link>, published in the Winter 2023 issue of <bold><italic>The Journal of Fixed Income</italic></bold>, authors <bold>Boyu Wu</bold>, <bold>Asawari Sathe</bold>, and <bold>Qian Wang</bold> of <bold>Vanguard</bold> and <bold>Amina Enkhbold</bold> of the <bold>Bank of Canada</bold> introduce a new four-factor, computer-learning model to predict the federal funds rate set by the Federal Open Market Committee (FOMC). The authors argue that their four-factor model, which considers inflation, labor market conditions, US financial market conditions, and commodity prices (as a proxy for global conditions), outperforms the Taylor rule for predicting the actions of the FOMC.","PeriodicalId":500434,"journal":{"name":"Practical applications of institutional investor journals","volume":"42 3","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Practical Applications of How Does the Fed Make Decisions: A Machine Learning Augmented Taylor Rule\",\"authors\":\"Boyu Wu, Amina Enkhbold, Asawari Sathe, Qian Wang\",\"doi\":\"10.3905/pa.2023.pa572\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In <ext-link><bold><italic>How Does the Fed Make Decisions: A Machine Learning Augmented Taylor Rule</italic></bold></ext-link>, published in the Winter 2023 issue of <bold><italic>The Journal of Fixed Income</italic></bold>, authors <bold>Boyu Wu</bold>, <bold>Asawari Sathe</bold>, and <bold>Qian Wang</bold> of <bold>Vanguard</bold> and <bold>Amina Enkhbold</bold> of the <bold>Bank of Canada</bold> introduce a new four-factor, computer-learning model to predict the federal funds rate set by the Federal Open Market Committee (FOMC). The authors argue that their four-factor model, which considers inflation, labor market conditions, US financial market conditions, and commodity prices (as a proxy for global conditions), outperforms the Taylor rule for predicting the actions of the FOMC.\",\"PeriodicalId\":500434,\"journal\":{\"name\":\"Practical applications of institutional investor journals\",\"volume\":\"42 3\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Practical applications of institutional investor journals\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3905/pa.2023.pa572\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Practical applications of institutional investor journals","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3905/pa.2023.pa572","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在2023年冬季出版的《固定收益杂志》上发表的《美联储如何做出决策:机器学习增强的泰勒规则》中,Vanguard的吴博宇、Asawari Sathe、王倩和加拿大银行的Amina Enkhbold介绍了一个新的四因素计算机学习模型,用于预测联邦公开市场委员会(FOMC)设定的联邦基金利率。作者认为,他们的四因素模型考虑了通货膨胀、劳动力市场状况、美国金融市场状况和商品价格(作为全球状况的代表),在预测联邦公开市场委员会的行动方面优于泰勒规则。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Practical Applications of How Does the Fed Make Decisions: A Machine Learning Augmented Taylor Rule
In How Does the Fed Make Decisions: A Machine Learning Augmented Taylor Rule, published in the Winter 2023 issue of The Journal of Fixed Income, authors Boyu Wu, Asawari Sathe, and Qian Wang of Vanguard and Amina Enkhbold of the Bank of Canada introduce a new four-factor, computer-learning model to predict the federal funds rate set by the Federal Open Market Committee (FOMC). The authors argue that their four-factor model, which considers inflation, labor market conditions, US financial market conditions, and commodity prices (as a proxy for global conditions), outperforms the Taylor rule for predicting the actions of the FOMC.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信