使用高粒度分析的电气化电网规划:对交通配送基础设施的洞察

IF 3.1 3区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Robert A. F. Currie, Teddy Ward, James L. Carney, Greg Mandelman, Margot C. Everett, Aram Shumavon, Nathan Phelps, Lindsay Griffin, Stephan Roundtree
{"title":"使用高粒度分析的电气化电网规划:对交通配送基础设施的洞察","authors":"Robert A. F. Currie, Teddy Ward, James L. Carney, Greg Mandelman, Margot C. Everett, Aram Shumavon, Nathan Phelps, Lindsay Griffin, Stephan Roundtree","doi":"10.1109/mpe.2023.3308237","DOIUrl":null,"url":null,"abstract":"Many countries are enhancing the planning and interconnection process to accelerate the interconnection of solar, wind, and other technologies to the distribution grid. The electrification of transportation, however, is going to have a much larger impact on utility planning and operations, essentially transforming utilities into providers of foundational mobility-related services. The speed of electric vehicle (EV) adoption is increasing and is an order of magnitude faster than the pace at which utilities build new distribution and transmission infrastructure. EV adoption scenarios must be sufficiently accurate, granular, and specific to identify critical grid investment needs. Identifying probable EV adoption and usage patterns and then modeling their impacts on the power grid is a complex process that will be fundamental to decarbonizing the grid.","PeriodicalId":55020,"journal":{"name":"IEEE Power & Energy Magazine","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Grid Planning for Electrification Using Highly Granular Analytics: Insights Into the Transportation Distribution Infrastructure\",\"authors\":\"Robert A. F. Currie, Teddy Ward, James L. Carney, Greg Mandelman, Margot C. Everett, Aram Shumavon, Nathan Phelps, Lindsay Griffin, Stephan Roundtree\",\"doi\":\"10.1109/mpe.2023.3308237\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Many countries are enhancing the planning and interconnection process to accelerate the interconnection of solar, wind, and other technologies to the distribution grid. The electrification of transportation, however, is going to have a much larger impact on utility planning and operations, essentially transforming utilities into providers of foundational mobility-related services. The speed of electric vehicle (EV) adoption is increasing and is an order of magnitude faster than the pace at which utilities build new distribution and transmission infrastructure. EV adoption scenarios must be sufficiently accurate, granular, and specific to identify critical grid investment needs. Identifying probable EV adoption and usage patterns and then modeling their impacts on the power grid is a complex process that will be fundamental to decarbonizing the grid.\",\"PeriodicalId\":55020,\"journal\":{\"name\":\"IEEE Power & Energy Magazine\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2023-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Power & Energy Magazine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/mpe.2023.3308237\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Power & Energy Magazine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/mpe.2023.3308237","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

许多国家正在加强规划和互联进程,以加速太阳能、风能和其他技术与配电网的互联。然而,交通电气化将对公用事业的规划和运营产生更大的影响,从根本上将公用事业转变为基础移动相关服务的提供者。电动汽车(EV)的普及速度正在加快,其速度比公用事业公司建设新的配电和输电基础设施的速度快一个数量级。电动汽车的采用场景必须足够准确、细致和具体,以确定关键的电网投资需求。确定可能的电动汽车采用和使用模式,然后对其对电网的影响进行建模,这是一个复杂的过程,将是电网脱碳的基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Grid Planning for Electrification Using Highly Granular Analytics: Insights Into the Transportation Distribution Infrastructure
Many countries are enhancing the planning and interconnection process to accelerate the interconnection of solar, wind, and other technologies to the distribution grid. The electrification of transportation, however, is going to have a much larger impact on utility planning and operations, essentially transforming utilities into providers of foundational mobility-related services. The speed of electric vehicle (EV) adoption is increasing and is an order of magnitude faster than the pace at which utilities build new distribution and transmission infrastructure. EV adoption scenarios must be sufficiently accurate, granular, and specific to identify critical grid investment needs. Identifying probable EV adoption and usage patterns and then modeling their impacts on the power grid is a complex process that will be fundamental to decarbonizing the grid.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Power & Energy Magazine
IEEE Power & Energy Magazine 工程技术-工程:电子与电气
CiteScore
5.10
自引率
0.00%
发文量
145
审稿时长
>12 weeks
期刊介绍: IEEE Power & Energy Magazine is dedicated to disseminating information on all matters of interest to electric power engineers and other professionals involved in the electric power industry with a focus on advanced concepts, technologies, and practices associated with all aspects of electric power from a technical perspective in synergy with nontechnical areas such as business, environmental, and social concerns. IEEE Power & Energy Magazine keeps its readers up-to-date on the latest technological advancements, industry news, business trends and strategies, products, and publications. Important newsworthy items concerning the worldwide activities and achievements of IEEE Power & Energy Society (PES), its organizational units, and its individual members are also included.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信