工业视觉检测与TinyML高性能质量控制

IF 1.6 4区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Andrea Albanese, Davide Brunelli
{"title":"工业视觉检测与TinyML高性能质量控制","authors":"Andrea Albanese, Davide Brunelli","doi":"10.1109/mim.2023.10292593","DOIUrl":null,"url":null,"abstract":"In industrial processes, predictive maintenance or automated optical analysis of artifacts is fundamental to ensure high-quality products with low costs. However, this step is still done by sophisticated systems or human operators. Automating this process with low-cost solutions while keeping high product quality is one of the most challenging goals of the Industrial Internet of Things (IIoT). IIoT fosters an automation-based production model that uses machine data to enable faster, more flexible, and more efficient production lines [1], leading companies to produce higher-quality goods at lower costs.","PeriodicalId":55025,"journal":{"name":"IEEE Instrumentation & Measurement Magazine","volume":"402 2","pages":"0"},"PeriodicalIF":1.6000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Industrial Visual Inspection with TinyML for High-Performance Quality Control\",\"authors\":\"Andrea Albanese, Davide Brunelli\",\"doi\":\"10.1109/mim.2023.10292593\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In industrial processes, predictive maintenance or automated optical analysis of artifacts is fundamental to ensure high-quality products with low costs. However, this step is still done by sophisticated systems or human operators. Automating this process with low-cost solutions while keeping high product quality is one of the most challenging goals of the Industrial Internet of Things (IIoT). IIoT fosters an automation-based production model that uses machine data to enable faster, more flexible, and more efficient production lines [1], leading companies to produce higher-quality goods at lower costs.\",\"PeriodicalId\":55025,\"journal\":{\"name\":\"IEEE Instrumentation & Measurement Magazine\",\"volume\":\"402 2\",\"pages\":\"0\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2023-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Instrumentation & Measurement Magazine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/mim.2023.10292593\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Instrumentation & Measurement Magazine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/mim.2023.10292593","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

在工业过程中,工件的预测性维护或自动光学分析是确保低成本高质量产品的基础。然而,这一步仍然是由复杂的系统或人工操作完成的。用低成本的解决方案自动化这一过程,同时保持高产品质量是工业物联网(IIoT)最具挑战性的目标之一。工业物联网促进了一种基于自动化的生产模式,它使用机器数据来实现更快、更灵活、更高效的生产线[1],从而使企业以更低的成本生产出更高质量的产品。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Industrial Visual Inspection with TinyML for High-Performance Quality Control
In industrial processes, predictive maintenance or automated optical analysis of artifacts is fundamental to ensure high-quality products with low costs. However, this step is still done by sophisticated systems or human operators. Automating this process with low-cost solutions while keeping high product quality is one of the most challenging goals of the Industrial Internet of Things (IIoT). IIoT fosters an automation-based production model that uses machine data to enable faster, more flexible, and more efficient production lines [1], leading companies to produce higher-quality goods at lower costs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Instrumentation & Measurement Magazine
IEEE Instrumentation & Measurement Magazine 工程技术-工程:电子与电气
CiteScore
4.20
自引率
4.80%
发文量
147
审稿时长
>12 weeks
期刊介绍: IEEE Instrumentation & Measurement Magazine is a bimonthly publication. It publishes in February, April, June, August, October, and December of each year. The magazine covers a wide variety of topics in instrumentation, measurement, and systems that measure or instrument equipment or other systems. The magazine has the goal of providing readable introductions and overviews of technology in instrumentation and measurement to a wide engineering audience. It does this through articles, tutorials, columns, and departments. Its goal is to cross disciplines to encourage further research and development in instrumentation and measurement.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信