{"title":"采用改进的统一电能质量调节器的径向配电系统优化电能质量","authors":"Oluwafunso Oluwole Osaloni, Ayodeji Stephen Akinyemi, Abayomi Aduragba Adebiyi, Katleho Moloi, Ayodeji Olalekan Salau","doi":"10.37394/232016.2023.18.17","DOIUrl":null,"url":null,"abstract":"Massive electric power distribution over long distances with consequential Power Quality (PQ) challenges such as voltage sags and power losses are some of the significant attributes of a Radial Distribution Network (RDN). Deployment of Power Angle Regulated (PAR) based Unified Power Quality Conditioner (UPQC) in a distribution network is also securing attraction because of the latest recorded achievements and improvements in Voltage Source Inverter (VSI) built power electronic systems. However, optimal allocation of this kind of device to mitigate PQ problems remains a challenge for achieving set objectives. Consequently, this study considers the best possible allocation of PAR and Improved-UPQC know as I-UPQC in the distribution network to enhance power network performance. The identification of optimal location is achieved through the application of hybridization of the Genetic Algorithm and Improved Particle Swarm Optimization (GA & IPSO). The deterministic approach is based on the weight factor of various objective functions. The allocation is attained with a selection of reactive power control between inverter connected in parallel and series and control angle variables of the device through its dynamic involvement of total system loss derivatives. Performances of the I-UPQC based distribution system during diverse power transfers are observed. Convergence characteristic of deterministic approach at different disturbance percentages is analyzed and presented. Imaginary power circulation enhanced the voltage-associated challenges at the range of 0.949 to 0.9977. Hence, power dissipation minimized to 1.15 percent compared to the initial 3.35 percent, according to results of I-UPQC allocation in RDN utilizing mathematical and optimization technique. Additionally, the network losses, voltage dip, and minimum bus voltage profile all fall within the regulatory standards of less than 2%, 5%, and 5%, correspondingly. Also, the performance of the compensated network for both ordinary and optimized scenarios indicated the fitness of the projected method in accomplishing an operational optimization of RDN, specifically for voltage profile (VP) improvement and I-UPQC's series and shunt inverter share imaginary power.","PeriodicalId":38993,"journal":{"name":"WSEAS Transactions on Power Systems","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimal Power Quality Enhancement using a Radial Distribution System with an Improved Unified Power Quality Conditioner\",\"authors\":\"Oluwafunso Oluwole Osaloni, Ayodeji Stephen Akinyemi, Abayomi Aduragba Adebiyi, Katleho Moloi, Ayodeji Olalekan Salau\",\"doi\":\"10.37394/232016.2023.18.17\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Massive electric power distribution over long distances with consequential Power Quality (PQ) challenges such as voltage sags and power losses are some of the significant attributes of a Radial Distribution Network (RDN). Deployment of Power Angle Regulated (PAR) based Unified Power Quality Conditioner (UPQC) in a distribution network is also securing attraction because of the latest recorded achievements and improvements in Voltage Source Inverter (VSI) built power electronic systems. However, optimal allocation of this kind of device to mitigate PQ problems remains a challenge for achieving set objectives. Consequently, this study considers the best possible allocation of PAR and Improved-UPQC know as I-UPQC in the distribution network to enhance power network performance. The identification of optimal location is achieved through the application of hybridization of the Genetic Algorithm and Improved Particle Swarm Optimization (GA & IPSO). The deterministic approach is based on the weight factor of various objective functions. The allocation is attained with a selection of reactive power control between inverter connected in parallel and series and control angle variables of the device through its dynamic involvement of total system loss derivatives. Performances of the I-UPQC based distribution system during diverse power transfers are observed. Convergence characteristic of deterministic approach at different disturbance percentages is analyzed and presented. Imaginary power circulation enhanced the voltage-associated challenges at the range of 0.949 to 0.9977. Hence, power dissipation minimized to 1.15 percent compared to the initial 3.35 percent, according to results of I-UPQC allocation in RDN utilizing mathematical and optimization technique. Additionally, the network losses, voltage dip, and minimum bus voltage profile all fall within the regulatory standards of less than 2%, 5%, and 5%, correspondingly. Also, the performance of the compensated network for both ordinary and optimized scenarios indicated the fitness of the projected method in accomplishing an operational optimization of RDN, specifically for voltage profile (VP) improvement and I-UPQC's series and shunt inverter share imaginary power.\",\"PeriodicalId\":38993,\"journal\":{\"name\":\"WSEAS Transactions on Power Systems\",\"volume\":\"35 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"WSEAS Transactions on Power Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.37394/232016.2023.18.17\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"WSEAS Transactions on Power Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37394/232016.2023.18.17","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
Optimal Power Quality Enhancement using a Radial Distribution System with an Improved Unified Power Quality Conditioner
Massive electric power distribution over long distances with consequential Power Quality (PQ) challenges such as voltage sags and power losses are some of the significant attributes of a Radial Distribution Network (RDN). Deployment of Power Angle Regulated (PAR) based Unified Power Quality Conditioner (UPQC) in a distribution network is also securing attraction because of the latest recorded achievements and improvements in Voltage Source Inverter (VSI) built power electronic systems. However, optimal allocation of this kind of device to mitigate PQ problems remains a challenge for achieving set objectives. Consequently, this study considers the best possible allocation of PAR and Improved-UPQC know as I-UPQC in the distribution network to enhance power network performance. The identification of optimal location is achieved through the application of hybridization of the Genetic Algorithm and Improved Particle Swarm Optimization (GA & IPSO). The deterministic approach is based on the weight factor of various objective functions. The allocation is attained with a selection of reactive power control between inverter connected in parallel and series and control angle variables of the device through its dynamic involvement of total system loss derivatives. Performances of the I-UPQC based distribution system during diverse power transfers are observed. Convergence characteristic of deterministic approach at different disturbance percentages is analyzed and presented. Imaginary power circulation enhanced the voltage-associated challenges at the range of 0.949 to 0.9977. Hence, power dissipation minimized to 1.15 percent compared to the initial 3.35 percent, according to results of I-UPQC allocation in RDN utilizing mathematical and optimization technique. Additionally, the network losses, voltage dip, and minimum bus voltage profile all fall within the regulatory standards of less than 2%, 5%, and 5%, correspondingly. Also, the performance of the compensated network for both ordinary and optimized scenarios indicated the fitness of the projected method in accomplishing an operational optimization of RDN, specifically for voltage profile (VP) improvement and I-UPQC's series and shunt inverter share imaginary power.
期刊介绍:
WSEAS Transactions on Power Systems publishes original research papers relating to electric power and energy. We aim to bring important work to a wide international audience and therefore only publish papers of exceptional scientific value that advance our understanding of these particular areas. The research presented must transcend the limits of case studies, while both experimental and theoretical studies are accepted. It is a multi-disciplinary journal and therefore its content mirrors the diverse interests and approaches of scholars involved with generation, transmission & distribution planning, alternative energy systems, power market, switching and related areas. We also welcome scholarly contributions from officials with government agencies, international agencies, and non-governmental organizations.