Jinming Liu, Xiaolong Huang, Quan Du, Lingyu Ouyang, Jian Xiao, Yong Li
{"title":"Cd-Ce体系的关键系统研究:通过热力学描述的相稳定性和吉布斯形成能和平衡能","authors":"Jinming Liu, Xiaolong Huang, Quan Du, Lingyu Ouyang, Jian Xiao, Yong Li","doi":"10.1515/ijmr-2021-8214","DOIUrl":null,"url":null,"abstract":"Abstract The CALPHAD (CAlculation of PHAse Diagrams) technique is used in the critical remodeling of the Cd–Ce system. On the basis of new experimental data in the literature, the excess Gibbs energies of the solution phase expression (liquid, bcc, fcc, and hcp_A3) are described using the Redlich–Kister equation. Four compounds (Cd3Ce, Cd6Ce, Cd11Ce, and Cd17Ce2) are treated as stochiometric compounds. Two intermetallic compounds (Cd2Ce and Cd58Ce13), which exhibit a little homogeneity range, are treated as a two-sublattice model. Two thermodynamic models are used for the CdCe and bcc. Model I is to model the compound CdCe and bcc-Ce separately. Model II is to use the formula (Cd, Ce)0.5(Cd, Ce)0.5(Va)3 to describe the compound CdCe with a CsCl-type structure (B2) and cope with the disorder–order transition from bcc-A2 to bcc-B2. The present work shows that four eutectic reactions, three peritectic reactions, two eutectoid reactions, one peritectoid transformation and three congruent reactions are observed, and the stoichiometric compound Cd17Ce2 is only stable from 804 to 882 °C in the Cd–Ce system.","PeriodicalId":14079,"journal":{"name":"International Journal of Materials Research","volume":"57 18","pages":"0"},"PeriodicalIF":0.7000,"publicationDate":"2023-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Critical systematic investigation of the Cd–Ce system: phase stability and Gibbs energies of formation and equilibria via thermodynamic description\",\"authors\":\"Jinming Liu, Xiaolong Huang, Quan Du, Lingyu Ouyang, Jian Xiao, Yong Li\",\"doi\":\"10.1515/ijmr-2021-8214\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The CALPHAD (CAlculation of PHAse Diagrams) technique is used in the critical remodeling of the Cd–Ce system. On the basis of new experimental data in the literature, the excess Gibbs energies of the solution phase expression (liquid, bcc, fcc, and hcp_A3) are described using the Redlich–Kister equation. Four compounds (Cd3Ce, Cd6Ce, Cd11Ce, and Cd17Ce2) are treated as stochiometric compounds. Two intermetallic compounds (Cd2Ce and Cd58Ce13), which exhibit a little homogeneity range, are treated as a two-sublattice model. Two thermodynamic models are used for the CdCe and bcc. Model I is to model the compound CdCe and bcc-Ce separately. Model II is to use the formula (Cd, Ce)0.5(Cd, Ce)0.5(Va)3 to describe the compound CdCe with a CsCl-type structure (B2) and cope with the disorder–order transition from bcc-A2 to bcc-B2. The present work shows that four eutectic reactions, three peritectic reactions, two eutectoid reactions, one peritectoid transformation and three congruent reactions are observed, and the stoichiometric compound Cd17Ce2 is only stable from 804 to 882 °C in the Cd–Ce system.\",\"PeriodicalId\":14079,\"journal\":{\"name\":\"International Journal of Materials Research\",\"volume\":\"57 18\",\"pages\":\"0\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-11-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Materials Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/ijmr-2021-8214\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"METALLURGY & METALLURGICAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Materials Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/ijmr-2021-8214","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
Critical systematic investigation of the Cd–Ce system: phase stability and Gibbs energies of formation and equilibria via thermodynamic description
Abstract The CALPHAD (CAlculation of PHAse Diagrams) technique is used in the critical remodeling of the Cd–Ce system. On the basis of new experimental data in the literature, the excess Gibbs energies of the solution phase expression (liquid, bcc, fcc, and hcp_A3) are described using the Redlich–Kister equation. Four compounds (Cd3Ce, Cd6Ce, Cd11Ce, and Cd17Ce2) are treated as stochiometric compounds. Two intermetallic compounds (Cd2Ce and Cd58Ce13), which exhibit a little homogeneity range, are treated as a two-sublattice model. Two thermodynamic models are used for the CdCe and bcc. Model I is to model the compound CdCe and bcc-Ce separately. Model II is to use the formula (Cd, Ce)0.5(Cd, Ce)0.5(Va)3 to describe the compound CdCe with a CsCl-type structure (B2) and cope with the disorder–order transition from bcc-A2 to bcc-B2. The present work shows that four eutectic reactions, three peritectic reactions, two eutectoid reactions, one peritectoid transformation and three congruent reactions are observed, and the stoichiometric compound Cd17Ce2 is only stable from 804 to 882 °C in the Cd–Ce system.
期刊介绍:
The International Journal of Materials Research (IJMR) publishes original high quality experimental and theoretical papers and reviews on basic and applied research in the field of materials science and engineering, with focus on synthesis, processing, constitution, and properties of all classes of materials. Particular emphasis is placed on microstructural design, phase relations, computational thermodynamics, and kinetics at the nano to macro scale. Contributions may also focus on progress in advanced characterization techniques. All articles are subject to thorough, independent peer review.